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ADVANCED LECTURE HANDOUT (FOR HOME STUDY) 

The Discovery of Entropy and its Significance 
“Through an ingenious argument whose steps we cannot follow here, Clausius concludes 
that the equivalence value of an isothermal conversion of work into heat is equal to Q/T, 
where Q is the heat and T is the temperature.” (lecture, p. 20) 
 
Question: How exactly did Clausius arrive at Q/T for the equivalence value of a 
transformation of work into heat Q at absolute temperature T? 
 
Here is a summary of the steps of Clausius’s exceptionally complex reasoning (mostly to be found in his 
1854 paper): 
 
1. “The value of a transformation from work into heat must be proportional to the quantity of heat 
produced; and besides that it can only depend on the temperature.” So the equivalence value must be of 
the form Qf(T), where f(T) is some function of the absolute temperature T. 
 
2. For the reverse transformation, from heat into work, the equivalence value will be -Qf(T). 
 
3. Similarly, for the fall of heat Q from temperature T1 to temperature T2, the equivalence value must be 
of the form QF(T1, T2), where F(T1, T2) is some other function of the two temperatures. 
 
4. For the reverse (the rise of heat Q from temperature T2 to temperature T1, the equivalence value will 
be: QF(T2, T1) = - QF(T1, T2). 
 
5. For Clausius’s six-point reversible Carnot cycle (see Lecture Handout, p. 4), the conversion of heat Q1 
into work at temperature TA and the fall of heat Q from temperature TB to temperature TC must be equal 
in magnitude but opposite in sign: -Q1f(TA) + QF(TB, TC) = 0. 
 
6. Suppose the original six-point Carnot cycle is modified in three ways: (1) the conversion between 
heat and work occurs now at some new temperature TD rather than at TA, (2) it now involves a quantity 
of heat Q2 rather than Q1, and (3) the whole cycle is now run in reverse (so that work is converted into 
heat Q2 at temperature TD, and heat Q rises from temperature TC to temperature TB). For the whole 
modified cycle, we now have: Q2f(TD) + QF(TC, TB) = 0. 
 
7. Adding together the equations from steps 5 and 6, and applying the equation from step 4, yields: 
Q2f(TD) + QF(TC, TB) - Q1f(TA) + QF(TB, TC) = Q2f(TD) - Q1f(TA) = 0. 
 
8. If we now run both six-point cycles (the original cycle and the modified reverse cycle) together as 
one process, then the fall of heat Q from temperature TB to temperature TC and the rise of heat Q from 
temperature TC to temperature TB precisely cancel each other, leaving only the conversion of heat Q1 
into work at temperature TA and the conversion of work into heat Q2 at temperature TD. These are 
transformations of the same kind; and together they form a standard 4-point reversible Carnot cycle, 
either overall turning heat into work (standard Carnot engine) if TA is higher than TD, or overall 
turning work into heat (reverse Carnot engine) if TD is higher than TA. 
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9. “These two transformations of the same kind, however, may be so divided and combined as again to 
appear as transformations of different kinds.” Suppose TD is greater than TA; then we have a reverse 
Carnot engine (overall converting work into heat), and it follows that, of the two quantities of heat, Q2 > 
Q1. We may therefore divide the quantity of heat Q2 into two parts, Q1 and Q2 - Q1. The first part Q1 can 
then be interpreted as rising from temperature TA to temperature TD, while the second part Q2 - Q1 is 
interpreted as being generated from work at temperature TD. 
 
10. Thus, when run together, simplified, and reinterpreted in this way, the two six-point cycles (from 
steps 5 and 6 above), each of which represents a double process (including both a conversion between 
heat and work and a fall or rise of heat), also describe a double process (except that only two, not three, 
temperatures are involved). For this double process it follows that: (Q2 - Q1) f(TD) + Q1F(TA, TD) = 0. 
 
11. But in step 7 we found that Q2f(TD) - Q1f(TA) = 0. We can combine this equation with the equation 
from step 10 to eliminate Q2: Q1f(TA)  - Q1)f(TD) + Q1F(TA, TD) = 0, or Q1[f(TA) - f(TD)] + Q1F(TA, TD) 
= 0. 
 
12. Dividing this last equation by Q1 yields F(TA, TD) = f(TD) - f(TA). In other words, “the function F of 
two temperatures which applies to the second kind of transformation is reduced, in a general manner, to 
the function f of one temperature which apples to the second kind.” 
 
13. At this point, for reasons of convenience, Clausius defines q as the reciprocal of f (f = 1/q); so that q, 
like f, is some as yet unknown function of the absolute temperature T.  
 
14. Clausius now enunciates the theorem of the equivalence of transformations: If two transformations 
which, without necessitating any other permanent change, can mutually replace one another, be called 
equivalent, then the generation of the quantity of heat Q of the temperature T from work has the 
equivalence value Q/q, and the passage of the quantity of heat Q from temperature T1 to temperature T2 
has the equivalence value Q(1/q 2 – 1/q 1), wherein q is a function of the temperature T, independent of 
the nature of the process by which the transformation is effected. The question remains: What is the 
dependence of q on T?  
 
15. Since all rises or falls of heat can thus be reinterpreted as pairs of conversions of heat into and out 
of work, it follows that the total equivalence value N of all the transformations in a cyclical process will 
be: N = Q1/q 1 + Q2/q 2 + Q3/q 3 + … = SQ/q. In the most general case, where infinitesimal quantities of 
heat dQ are transformed into and out of work at a continuous range of temperatures, N = ∫dQ/q. If the 
cyclical process is reversible, then N = ∫dQ/q  = 0. If this were not the case, one could use the process 
to lift heat from a lower to a higher temperature without employing any work, contrary to Clausius’s 
second fundamental principle, that heat can never of itself pass from a colder body to a warmer body. 
Thus  ∫dQ/q  = 0 is an analytical expression, for all reversible cyclical processes, of Clausius’ second 
fundamental principle.  
 
16. Next, on the assumption that the conditions of a body are defined by its temperature T and volume 
V, let us express dQ as dQ = (dQ/dT)dT + (dQ/dV)dV, where dT and dV are incremental changes to the 
body’s temperature and volume due to work done on the body or by the body. Then, for reversible 
cyclical processes, ∫dQ/q  =∫(1/q)(dQ/dT)dT + (1/q)(dQ/dV)dV = 0, and the quantity (1/q)(dQ/dT)dT 
+ (1/q)(dQ/dV)dV must be a complete differential, from which it follows that d/dT[(1/q)(dQ/dV)] = 
d/dV[(1/q)(dQ/dT)]. 
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17. From the last result we obtain: (1/q)d/dT(dQ/dV) - (dQ/dV)(dq/dT)/q2  = (1/q)(d/dV)(dQ/dT) or 
(dQ/dV)(dq/dT) = q[d/dT(dQ/dV) - d/dV(dQ/dT)]. 
 
18. Earlier in the paper, Clausius had shown that, when heat Q in a body is made to do exterior work W 
(and is thus “converted into work”), Q = AW, where A is “the equivalent of heat for the unit of work.” 
Also, the work done during a simultaneous increase of temperature dT and volume dV is dW = PdV 
(since the change in temperature contributes to the work by only changing the volume), where P is the 
pressure (which can be expressed as a function of V alone). From this (by a rather involved argument) 
Clausius had concluded that d/dT(dQ/dV) - d/dV(dQ/dT) = A(dP/dT). Applying this to the equation in 
step 16 gives: (dQ/dV)(dq/dT)  = Aq(dP/dT). 
 
19. Clausius now proceeds to evaluate the dependence of q on T, invoking “an accessory assumption” 
to the effect that a permanent gas, when it expands at a constant temperature, absorbs only so much 
heat as is consumed by the exterior work thereby performed.  The exterior work done when a gas 
expands by volume dV under pressure P is dW = PdV, and the quantity of heat absorbed thereby is 
(dQ/dV)dV. But since Q = AW, dQ = AdW = APdV. Therefore dQ/dV = AP. 
 
20. Substituting this last result into the equation from step 17 gives AP(dq/dT) = AT(dP/dq), or   
(dq/dT)/T = (dP/dq)/P. 
 
21. Clausius now invokes the combined gas law, which states that PV = kT or P = kT/V. Substituting 
that value of P into the equation from step 19 gives dq/q = dT/T. By integration this means q = TK, 
where K is some constant that we might as well set equal to 1. It follows that q is nothing other than 
the absolute temperature T! 
 
22. Clausius’s conclusion is that (a) the equivalence value of every conversion of work into heat Q at 
absolute temperature T is Q/T; (b) the equivalence value of every conversion of heat Q into work at 
absolute temperature T is -Q/T; and (c) the equivalence value of every fall of heat Q from temperature 

T1 to temperature T2 is . It was on this basis that, eleven years later, in his paper of 1865, 

Clausius gave the name entropy to the quantity ∆𝑆 = ∫ !"
#

. In this equation, DS is the total change in the 
entropy of a body that, over some period of time, absorbs or releases incremental quantities of heat dQ at 
absolute temperatures T. As we have seen, for reversible cyclical processes DS = 0. For all other 
processes (and for every actual process in the real world, in which at least some uncompensated falls 
of heat are unavoidable) ∆𝑆 = ∫ !"

#
> 0. And that inequality is a precise statement of what is now 

known as the Second Law of Thermodynamic. 
 
Q.E.D. 
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