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Introduction

IT Is often assumed today that the composition of good music is
either a purely intuitive process, independent of the composer’s
training or knowledge, or, on the other hand, a process of follow-
ing arbitrary rules and making arbitrary restrictions.

Paul Valéry has written, in an article on poetics:

Not very long ago, all the arts were subject, each according to its
nature, to certain obligatory forms or modes imposed on all works
of the same genre; these could be and had to be learned, as we do the
syntax of a language. . . . But gradually, and on the authority of
very great men, the idea of a certain legality crept in and took the
place of what had been, at first, recommendations of empirical origin.
Reason put rigor into the rules. They were expressed in precise for-
mulas; the critic armed himself with them; ...t

These rules hardened into dogma instead of remaining flexible and
subject to change, generalization, and improvement, the way a true
science does. So of course they were broken, often for the mere
sake of breaking them. The idea developed that one rule is as good
as another: Wagner has Hans Sachs say in Die Meistersinger,
“Set up your rules, and then follow them.” ‘

This book is an attempt to show that this is not true. It will be
maintained that there are some rules which are better than others,
relative to certain generally accepted aesthetic axioms. Specifi-
cally, it is the author’s contention that the seven-tone diatonic
scales, and combinations of these scales, are superior, relative to
the axioms, to the twelve-tone chromatic scale, as tonal matrices
from which to compose.

The reasoning will be as follows: “Root” will be defined quanti-
tatively and operationally in such a manner that for any set of

1Valéry, Paul, “The Course in Poetics: First Lesson,” The Creative Pro~
cess, Mentor Books, N.Y., 1955, p. 92. L
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tones a procedure is given to determine whether it has a single
root, many roots, or no root.

It will then be demonstrated that the diatonic major and the
seven-tone harmonic minor sets have a single predominant root
independent of their spatial or temporal distribution, and that the
twelve-tone set (and the nineteen tone supra-scale of Yasser) do
not.

The superiority of sets of tones having a single predominant
root over those which do not will then be argued.

The natural phenomena which will be evoked as causes are
(1) the existence of the overtone series, and (2) the existence of
habit as a law of human nature.

That the diatonic set of tones has a single predominant root
permits the development of a meaningful and consistent method of
functional analysis of music which does not depend upon the

. analyser’s intuition.

This. fact also permits a meaningful definition of “tonality,” as
well as of a number of other words whose meaning has become
confused and, in some cases, contradictory.

A theory of meter, related to the theory of pitch, will be
presented.

I am more interested in truth than in originality, and may there-
fore say some things which have been said before, and which may
be said again in the future. Heinrich Schenker and Paul Hindemith
are the two music theorists to whom I am particularly indebted.



Chapter One

The Perceived Sound

IN ORDER that a tone may come into existence two things are
required: a stimulus in the air, and a response of a person. It is the
subjective response with which I am ultimately concerned. This
response is a result of the whole past experience of the individual
as well as of his physiology; it may vary from person to person and
from time to time. Therefore, in order to learn something about it
which is relatively independent of individual psychology, the atten-
tion must be directed to the common property of the events.

The most obvious common property is the stimulus: the set of
sound waves which excite the response. These can be registered by
an impa.rtial machine, and can be described without ambiguity. A
curious thing happens when this experiment is made, that is, when
a machine registers the sound waves emitted in musical perfor-
mance by instruments without fixed pitch.

. the most significant thing about the result of this experiment is
that it required the intervention of the measuring instrument to reveal
these grotesque distortions of pltch these false tones. The audience,
which included experienced musicians, had not noticed them at all.

Thus a large error, in this case as much as 80 cents (a semi-tone is
100 cents) relative to an ideal tuning, passed by unnoticed by a
musical - audience. For music, like history, is a process in which
each additional tone or event may alter to some extent the signifi-
cance, syntactical or symbolic, of the tones which preceded it. The
context in which the pitches appear affects the heard pitch rela-
tionships themselves, and hence the integers which express them.
However, unless we first consider sets of tones out of context there
is no hope of ever being able to attack the more difficult problem
of sets of tones in context.

1 Zuckerkandl, Victor, Sound and Symbol, Bollingen Foundation, N.Y.,
1956, p. 79.
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I speak of sets of tones here rather than of chords, keys, or
scales, for the word “chord” implies simultaneity, the word “scale”
implies temporal ordering, and the word “key” has acquired many
contradictory meanings. By “set” I merely mean a group of tones
whose frequencies are related to each other as are the integers
which represent them, quite apart from the temporal order of oc-
currence of the tones, whether it be simultaneous or successive.

Many sets of tones can be expressed as sets of relatively prime
integers whose greatest common divisor is 1. For example, the
major triad is expressed by the numbers 4:5:6, where 4 corre-
sponds to the heard frequency of the lowest tone, 5 to that of the
middle tone, and 6 to the frequency of the highest tone. However,
there are some sets which cannot be unequlvocally translated into
sets. of integers. For if the sets are found high in the overtone
series 2 there will be several different sets of integers which may
represent them, and it is not always possible to decide unequivo-
cally which is the best representation. Perception is not simply the
registering of sense impressions; a certain amount of interpretation
enters in as well. The clue from the outer world, sense impression,
is interpreted by most individuals as being something familiar
whenever this is possible. The musical intervals with which every-
one is unavoidably (albeit unconsciously) familiar, are those in-
tervals found between the lower partials of the overtone series.

Figure 1 is a representation of the first sixteen partials of the
overtone series. To each integer there is associated a tone, but due to
our tuning systems only those tones which have no other prime fac-

2 Whenever a musical tone is sounded, whether produced by a vibrating
string or an air column, what actually occurs is a whole set of vibrations
which the ear synthesizes into one sound., For the string vibrates simultane-
ously, or nearly simultaneously, as a whole, in halves, in thirds, etc. ad
infinitum. Each of these vibrations produces a partial tone. If the frequency
produced by the string as a whole is 1, then the frequency produced by half
the string is 2, and by a third of the string is 3, and so on. This physical
manifestation of the natural numbers was dlscovered by the physicist Joseph
Sauveur in the seventeenth century.

“I was made to observe that especially at night one may hear from long
strings not only the prmclpal sound but also other small sounds . . . such that
the number of vibrations is a multlple of the number for the fundamental
sounds . . . I.concluded that the string in addition to the undulations it makes
in its entlre length so as to.form the fundamental sound may divide itself
‘in two, in three, in four, etc. undulations .

Joseph Sauveur, “Systéme general des mtervalles des sons, & son applica-

tion 2 tous les systemes & a-tous les instrumens de mus1que,” Mém. acad.
sci. Paris 1701. :
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tors than 1, 2, 3, and 5 can be represented accurately by musical
notation. All other tones are inaccurate, and are in parenthesis.

gva--

gva

gva

—Oo U O - oo ——
1 2 345 6789 101 12 13 14 15 16

Figure 1. The First 16 Partials of the Overtone Series, in Musical
Notation ‘

The overtone series is relevant to music, because musical tones,
including those of the human voice, are produced by the impinge-
ment of a set of pulses in the air, upon the hearing organ of a
person.? A pulse is a periodic alternation between high and low air
pressure. The wave lengths of the set of pulses or partial tones
which constitute a single musical tone are related to each other as
are the positive integers, 1, 2, 3, . . . etc. Each musical tone
consists of a theoretically infinite quantity of these wave trains. Of
course the set of pulses which our instruments can measure is
always a finite set. How many partials are perceived depends upon
the sensitivity of the instrument.

The partial tones whose frequencies, or quantlty of pulses per
second, correspond to the smaller numbers, are louder, or have a
greater amplitude, by and large, than do those pulses whose fre-
quencies correspond to the higher numbers. (In Culver’s Musical
Acoustics graphs are displayed which demonstrate the loudness of
the various partials in different instruments.4) Furthermore, the
smaller the number of pulses per second of a partial tone, the more
that partial is reinforced, or confirmed, by partials at upper
octaves. (See Figure 1). The octave of a partial tone is repre-
sented by a number which is twice the number of the partial.
From a purely numerical standpoint, the small numbers are more
important than the larger numbers, because the larger numbers are
formed from sets of the smaller numbers, and thus depend upon
the smaller numbers for their very existence. Hence the lower

8 Euler, Leonhard, Letters to a German Princess, Vol. 1, Harper, New
York, 1833, p. 39.

4 Culver, Charles A., Musical Acoustics, McGraw-Hlll New York, 1956,
p. 162.
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partials of a tone are more important to us than are the upper
partials.

What we hear as a difference in tone quality is caused by the
difference in the distribution and amplitudes of the partials of the
tones. We are not immediately aware of the nature of the stimulus;
it took the physicists to discover that. Similarly, we are not imme-
diately aware of the atomic structure of a table, nor of the periodic
nature of light rays. This does not, however, prevent us from
differentiating between different colors of light, or perceiving the
wood of the table as being different from the metal of the type-
writer upon it.

Since the seventeenth century physicists and music theorists
have been aware of the existence of the overtone series. But even
before that the music theorists, as early as Pythagoras and as late
as Descartes, dealt with tones which could be produced by succes-
sive divisions of a string into equal parts. The senario, or the
numbers from 1 to 6 with which Zarlino, Descartes and other
theorists were concerned, corresponds to the first six partials of the
overtone series. The representation of the intervals of music by the
ratios of two numbers can be found all throughout the history of
music theory. In the nineteenth and early twentieth centuries, how-
ever, many theorists denied the relevancy of the overtone series to
music, thinking that by concentrating on the response to the peri-
odic stimuli they could disregard the stimuli themselves. This is
part and parcel of the general tendency of the time to emphasize
the subjective aspects of experience over the objective. But re-
sponses are, except in the case of hallucinations, dependent on
their stimuli, and therefore, if the response is relevant to music, so
also is the stimulus. Today some music theorists are again assert-
ing the relevancy of the overtone series to music.%87

Thus the assumption concerning human psychology will be
made that within a certain as yet undetermined range the individ-
ual perceives the periodicities which stimulate him as the small
ratios with which he is most familiar, due to his unavoidable condi-

5 Hindemith, Paul, The Craft of Musical Composition, Associated Music
Publishers, N.Y:, Vol. 1, 1942, p. 15.

6 Redfield, John, Music, A Science and an Art, Alfred Knopf, N.Y., 1930,
p. 46.

7 Bobbitt, Richard, The Physical Basis of Intervallic Quality and its Appli-
cation to the Problem of Dissonance, Journal of Music Theory, Vol. III,
1959, Yale School of Music.
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tioning to the overtone series. This statement can be justified with-
out recourse to any more dubious law of human nature than “peo-
ple are creatures of habit.” No further attempt at justification of
this assumption will be made: however, it is implicitly assumed by
anyone who assigns integral ratios to the intervals of music, and
this includes nearly all the music theorists of the past and present,
for the actual pitches of equal temperament are incommensurable.

I shall assume that people tend to perceive equal-tempered
intervals as pure intervals. By “pure” intervals is meant those
intervals whose frequencies are related to each other as are the
tones of the lower partials of the overtone series. The farther up
the overtone series the interval is to be found, the more difficult it
is for the listener to identify the interval, for the higher partials are
softer and less familiar to us than are the lower partials. Further-
more, until the twentieth century, most of our scales have been
constructed by combining the intervals between the lower partials,
rather than those between the upper partials; so our past experi-
ence with scales also confirms this tendency. :

There is no uncertainty or doubt as to the correlation of the
integers 1:2 with the octave. No one questions the fact that this is
the paradigm ratio which the listener perceives, although the actual
stimulus may deviate slightly from it. But with other intervals it is
not always possible unequivocally to determine the paradigm ratio
which the ear perceives. Consider the minor seventh. The ratio
between the fourth and seventh partials, 4:7, does not exist in any
of the tunings used in Western music. The just scale contains two
different minor sevenths, 5:9, and 9:16, while the minor seventh of
the Pythagorean scale is 9:16. Which is the paradigm to which the
ear corrects the irrational interval of the equal-tempered scale, 4:7,
5:9, or 9:16? Arguments can be made in favor of each. An intel-
lectual problem as well as a sensory one is involved in arriving at
the integers which are the paradigms of the intervals we hear.
Figure 3, page 17, shows, among other things, the different numer-
ical ratios which can be assigned to various familiar sets of
tones. :

It is possible to arrive intellectually at numerical relationships
which will represent any set of tones by the Pythagorean system
of tone derivation, that is, by combination of 1:2 octaves and 2:3
fifths. However, the integers arrived at by this process may be very
large. Nevertheless, no intellectual doubt or compromise is neces-
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sary in order to do this. The compromise does not appear until one
of two things is desired: the 4:5 major third, or enharmonic
equivalence.

If the 4:5 major third is desired instead of the 64:81 Pytha-
- gorean third, the just scale results. It incorporates more of the
overtone series by including the fifth partial as well as the second,
third, and fourth partials, thus allowing the development of triadic
-harmony, but in doing so it eliminates the unequivocality of the
Pythagorean system. For in the just diatonic scale more than one
ratio is associated with all intervals except the octave, the major
third, the minor sixth, major seventh, and minor second.

If enharmonic equivalence is asserted, then two pitches which
are not the same, e.g., E-sharp and F, are said to be the same, and
the quantity of pitches which fill in the octave is restricted to the
finite number 12. This operation transforms the unequivocal Py-
thagorean scale into the equal-tempered scale, all of whose intervals
are irrational, and therefore do not serve as paradigms. There is
much music where any problem of enharmonic equivalence can be
eliminated by transposition of the whole piece into another key.
However, if the whole circle of twelve keys is involved in the com-
position, then enharmonic equivalence is an unavoidable phenom-
enon; it is something real, not just notational.

Once either of these two things is desired there must be an in-
tellectual compromise, for no power greater than 0 of one prime
number ever equals a power of another prime number; thus no
tone derived by successive 1:2 octaves will ever be identical with
any tone derived by successive 4:5 thirds. The equal-tempered scale
provides a wonderful compromise, which allows us to have our
cake and eat it too; by asserting the lie that twelve fifths equal seven
octaves it achieves at one and the same time enharmonic equivalence
and a close approximation to the pure third, at a slight sacrifice of
the purity of the fifth. Neither the deviation from the pure fifth or
the pure third is enough to prevent the ear from being able to per-
ceive the irrational interval as the pure one.

While the equal-tempered scale has been of great benefit to
composers, it has not always been of such benefit to theorists. For
there has been a tendency to confuse the means with the end, to
substitute the equal-tempered set itself, and decimal approxima-
tions to its mtervals, for the groups of diatonic rational scales

14



which it approximates, thus losing sight of those rational relation-
ships which justify its very existence. As far as perception is con-
cerned, the equal-tempered scale is a wonderful compromise, but
as far as conception is concerned, it clouds the important relation-
ships. However, unless percept and concept are confused into
one, equal temperament need cause no difficulties for composer or
theorist.

The equal-tempered set enables the composer to grasp as much
as possible of the overtone series without losing contact with the
fundamental. It does not sacrifice the lower intervals of the over-
tone series to the higher ones; it even gives a decent approximation
to the next prime partial above the fifth one, the seventh partial.
Furthermore, it is likely that all the other intervals formed between
partials of the overtone series are represented in the equal-tempered
scale within a range of accuracy smaller than the error in the
Zuckerkandl experiment, referred to previously. Figure 2, below,

Closest

Decimal Equal- Decimal  Discrep-
Approxi- tempered  Approxi- ancy
Name  Ratio mation  Equivalent  mation Ratio
P. 8th 2:1 2.000 2 2.000 1.000
P. 5th 3:2 1.500 2712 1.498 1.001
M. 3rd 5:4 1.250 218 1.260 1.008
m. 7th 7:4 1.750 26/6 1.782 1.019
M. 2nd 9:8 1.125 21/8 1.122 1.010
(A. 4th) 11:8 1.375 21/2 1.414 1.029
(m. 6th) 13:8 1.625 22/8 1.587 1.023
M. 7th  15:8 1.878 211/12 1.888 1.005
(m. 2nd) 17:16 1.062 2112 1.059 1.003
(m. 3rd) 19:16 1.188 21/4 1.189 1.000
“(P. 4th) 21:16 1.312 26/12 1.335 1.016
(A. 4th) 23:16 1.439 21/12 1.414 1.017
(m. 6th) 25:16 1.562 22/8 1.587 1.015
M. 6th  27:16 1.688 28/4 1.682 1.002
(m. 7th) 29:16 1.812 26/6 1.782 1.017
- P. 8h 31:16 1.939 211/12 1.888 1.028

An equal-tempered semitone = 1.059

Figure 2. A Comparison Between Pure Intervals and Equal-Tempered
Intervals

15



shows the relationships between (1) the intervals found between
the fundamental, or octave transposition of the fundamental, and
the first 31 partials of the overtone series, and (2) the equal-
tempered equivalent intervals. The last column gives a measure of
the discrepancy between the equal-tempered interval and the pure
interval. The biggest discrepancy occurs between the eleventh par-
tial and its equal-tempered representation. It is close to a quarter-
tone, while the error in the Zuckerkandl experiment referred to
*earlier was nearly a semitone.

The equal-tempered twelve-tone scale introduces the fruitful
compromise which permits unlimited modulation and hence the
development of Western music, but it does so at the price not only
of slight inaccuracy of pitch, but also of intellectual equivocality of
intervals. For in order to arrive at the rational numerical represen-
tation of an equal-tempered interval we must consider the context,
which may be infinitely varied. Thus the potential wealth of the
equal-tempered scale is made possible only by the sacrifice of
univocal definition of intervals.

Figure 3, page 17, is a table of familiar sets of tones, with some
of the different integral numerical ratios which can be associated
with them. The first column contains integers derived from the
Pythagorean 12-tone scale; they represent tones derived solely by
the superposition, or compounding, of 2:3 fifths and 1:2 octaves.
The second column contains integers found in the just diatonic
scale. The third column contains the smallest possible integers
arrived at by combining 2:3 fifths, 4:5 major thirds, and 5:6
minor thirds. The fourth column contains integers derived directly
from the overtone series, beginning with the lowest possible par-
tials which could represent the particular set in question, and end-
ing with the sets arrived at by the other columns. If this terminus
were not placed upon the numbers of Column IV, there would be
an infinite quantity of candidates for each set among the upper
partials, since if we go high enough we can find any set of integers.

It can be seen from Figure 3 that the intervals found between
the lower partials have fewer different ratios associated with them
than do the sets found between the higher partials, each of which
has several different sets of integers representing it. The fact that
we have a single word for these different mathematical relation-
shxps is itself a reflection of human perception thresholds, for we
give a single word to things which appear to be the same to us.

16



Just

Pythagorean  Diatonic  Com- Overtone
Name Scale Scale  bination Series
P. 8th 1:2 1:2 1:2 1:2
P. 5th 2:3. 2:3 2:3 2:3
27:40
P. 4th 3:4 3:4 3:4 3:4
20:27
M. 6th 16:27 3:5 3:5 3:5
A ' 16:27
m, 3rd 27:32 . 5:6 5:6 5:6
27:32
M. 3rd 64:81 4:5 4:5 4:5
m. 6th 81:128 5:8 5:8 5:8
m, 7th 9:16 5:9 5:9 4:7
‘ 9:16 5:9
M. 2nd 8:9 8:9 8:9 7:8
9:10 8:9
M. 7th 128:243 8:15 8:15 8:15
m. 2nd 243:256 15:16 15:16 15:16
A. 4th 512:729 32:45 25:36 5:7
7:10
8:11
9:13
11:14
‘etc.
D. 5th 729:1024 45:64 25:36 5:7
7:10
8:11
9:13
11:14
etc.
M. triad 64:81:96 4:5:6 4:5:6 4:5:6
m, triad 54:64:81 10:12: 10:12:15 6:7:9
15 10:12:15
D. triad 729:864: 45:54: 25:30:36 5:6:7
1024 64 11:13:15
12:14:17
etc.

Figure 3. Different Integral Representations of Familiar Sets of Tones
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Just
Pythagorean Diatonic Com- - Overtone

Name Scale Scale bination Series
A. triad 4096:5184: none 16:20:25 7:9:11
6534 8:10:13
9:11:14
etc.
Mm. 7th  576:729: 36:45: 20:25: 4:5:6:7
864:1024 54:64 30:36 12:15:18:21
20:25:30:36
mm. 7th  54:64: 10:12:  10:12: 10:12:15:18
81:96 15:18 15:18 '
27:32:
40:48
1%D. 7th  729:864: 45:54:  25:30: 5:6:7:9
1024:1296 64:80 36:45 11:13:16:20
etc.
D. 7th too big none 75:90: 10:12:14:17

108:125 etc.
M. 9th 576:729: 36:45:  36:45: 4:5:6:7:9

864:1024: 54:64: 54:64: 12:15:18:21:27
1295 80 80 20:25:30:36:45
‘ 36:45:54:64:80
m. Sth too big none 60:75: 8:10:12:14:17
, 90:108: 20:25:30:36:42
128 36:45:54:64:75

60:75:90:108:128

Figure 3. Different Integral Representations of Familiar Sets of Tones
(continued)

Although at first it appears to be impossibly complicated to dis-
cuss properties of different sets when confronted by all their differ-
ent possible numerical representations, there are, nevertheless, only
a finite quantity of relevant possibilities, and in the event that all the
numerical representations of a set have the same properties, we can
come to unequivocal conclusions about the nature of the set.

The table shows that seconds, sevenths, the augmented fourth,
and the diminished fifth differ from the other intervals, for column
IV shows several possibilities for each of these, and only one for
the others. These intervals have an inherent ambiguity not pos-
. sessed by the others, for a number of possible ratios exist for them,

18



€acn Or winicn 1s lower 1n the overtone series than the numerical
representations occurring in the just or Pythagorean scales. Which
of these ratios the ear will perceive depends upon the musical
context. For example, the major second between the two lowest
tones of a dominant seventh chord in its third inversion is likely to
be heard as 7:8, because the dominant seventh chord is a gestalt
which is in itself a representation of the overtone series as a whole;
therefore the seventh of the chord will be likely to be heard as the
seventh partial of the overtone series. On the other hand, a major
second occurring in a diatonic melody is more likely to be per-
ceived as 8:9, its value in the diatonic scale. This problem does
not arise concerning thirds, sixths, perfect fifths, and perfect
fourths, for in their cases the lowest overtone series representation
is reinforced, rather than contradicted, by the just scale, since the
just scale is constructed by combining these very intervals. (There
exist two varieties of perfect fifth, perfect fourth, major sixth, and
minor third in the just scale, but they are related to each other as
norm and variant due in part to the relative frequency of their
distribution in the scale.) In the case of the octave, perfect fourth
and perfect fifth, the overtone series interval is reinforced still
further by the Pythagorean scale, since that scale is constructed by
combining of these intervals. ,

Thus it can be seen that any evaluation of the properties of sets
of tones must take into consideration not only the numerical ratios
of the sets, but also the uniqueness of the association of the ratio
to the interval itself. '

Summary

1. Both stimulus and response are necessary for a tone to come
into existence. Since the response is a function of the stimulus as
well as many other possibly irrelevant factors, I choose to concen-
trate upon the stimulus. .

2. While it is true that the musical context effects the nature
of the tone as well as its relations to other tones, it is also true that
unless we artificially isolate tones and relationships between them
we can have no hope of arriving at any understanding of the
gestalt.
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3. A set of tones is a group of pitches (which may be repre-
sented by integers) apart from the order of their occurrence in
time.

4. Because we are creatures of habit and are subject to condi-
tioning, we are unavoidably conditioned to the overtone series due
to its physical presence in musical sounds; for this reason (and
possibly for others as well) ‘we unconsciously tend to correct the
stimuli to the intervals between the lower partials.

5. The just scale sacrifices the intellectual unequivocality of the
Pythagorean scale to the more accurate representation of the lower
partials. -

6. Equal temperament glves an adequate approximation to all
intervals.

7. Any evaluaﬂon of sets of tones must take into account the
equivocality of its integral representation.

20



Chapter Two

Consonance

IN ORDER to be able to represent sound waves as points in time we
must first establish a pressure norm, represented by the horizontal
line in the following picture:

PRESSURE f /\

INCREASE

~_ _“~

A single wave length can be represented by its end points: . . , and
a frequency can be represented spatially by a series of equally
spaced points.

Figure 4 (p. 22) shows the pattern of the first twelve partial
tones of the overtone series as they occur in the unit time interval,
each row of dots standing for a partial tone. The figure shows only
the first twelve partials, since that is all the page will hold; it could
‘be extended indefinitely, for the overtone series is a temporal
manifestation of the infinite set of the natural numbers.

In the physical world no two different occurrences of sets of
tones have the identical consonance value, for the perceived com-
plexity of the wave pattern varies with range, instrumentation,
intensity, number of partials, number of combination tones, and
the state of the perceiver, as well as with other more or less irrele-
vant factors which affect the perception of similar stimuli at differ-
ent times. But I am here considering the ideal conditions of which
the actual occutrence is a variant. This ideal condition is the unity,
or common property, or essence, of the diversity of experience.
The theorist must emphasize these common properties, for if he
chooses to emphasize the differences, no science, even no lan-
guage, is possible.
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Figure 4. The First Twelve Partials of the Overtone Series as Points in
Time, and the Position of some Sets of Tones in it.

“Consonance” is a name for such a common property of experi-
ence. Psychologically, “consonance” refers to the property of some
sets of tones of sounding as though they belonged together. An
attempt will be made here to choose objective phenomena which
provide the measure of consonance in this sense.

Any set of integers determines a single unit integer, 1, of\ which
the others are compounded. If these integers are interpreted as
frequencies of partial tones of an overtone series, then this 1 is the
frequency of the tone which is the fundamental of that overtone
series. Therefore, any set of partials, when represented by integers,
determines a single unique overtone series, the frequency of whose
fundamental is 1. Now, we represent not only sets of partials, but
sets of compound tones as well, by integers which, in the case of
the compound tones, represent the frequency of the fundamental
of each tone.  (All tones except those produced by instruments
specifically designed for the purpose, are compound tones.) The
following is a representation of the 4:5:6 major triad:
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These three tones determine another tone, an F two octaves below
the F of the chord, which has only one vibration in the same
amount of time that the F of the triad has four vibrations, the A
five vibrations, and the C six vibrations. This low F is related to
the tones of the triad as the fundamental of an overtone series of
which they are the fourth, fifth, and sixth partials. We shall call
this tone the fundamental of the set.

When the integers which represent the tones of the set are rela-
tively prime, then 1 is their greatest common measure. The great-
est common measure of the integers thus represents (1) the
smallest quantity of waves which take place in the unit time inter-
val under consideration, (2) the largest wave length, and (3) the
frequency of the fundamental of the set. The least common mul-
tiple 1 of the numbers represents, conversely, the smallest interval
of time determined by the set and the largest quantity of time
intervals determined by the set. The ratio of the least common
multiple to the greatest common divisor equals the number of
times which the smallest time interval determined by the set must
be repeated in order to equal the largest time interval.

When any set of wave lengths are combined they create a long
wave pattern, which will be repeated identically as long as the
tones are sounding. The frequency of the long wave pattern is the
same as that of the fundamental of the set. I will define the con-
sonance of any set of tones to be a function of two different
properties of the set: (1) the position of the set in the overtone
series of the fundamental it determines, and (2) the inner com-
plexity of the long wave pattern itself. The consonance increases as
the distance of the set from its fundamental decreases. The con-
sonance decreases as the inner complexity of the wave pattern
increases.

By this definition, consonance is a matter of degree, not kind. I
shall say of two different sets of tones that one is more consonant
than the other; not that one is absolutely consonant and the other

1The least common 'multiple of a set of numbers is the smallest number
which is divisible by all the given numbers.
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is absolutely dissonant. This substitutes a spectrum for a black and
white distinction. Dissonance increases as consonance decreases,
and vice versa. A chord can be dissonant or consonant in the same
sense that a thing can be big or little.

The upper partials of each tone of the set enter into the total

evaluation of consonance, as Helmholtz has pointed out,? but since
they themselves are functions of their fundamentals, only the rela-
tionships between the tones as fundamentals will be considered here
in the establishment of the basic theory. The upper partials of the
individual tones influence the complexity of the pattern (Property
IT) but not the position of the pattern in.the overtone series of the
fundamental it determines (Property I).
- The measure of Property I, the distance of the lowest tone of the
set from the fundamental of the set, is given by the smallest number
in the integral representation in lowest terms of the set. The measure
of Property II, the inner complexity of the pattern, is given by the
ratio of the least common multiple of the integers to the greatest
common divisor of the integers.

For example, consider the 4:5:6 major triad. Its position in the
overtone series it determines is given by 4, the number of vibrations
the lowest tone makes in the same time that the fundamental deter-
mined by the tones makes one vibration. The measure of the com-
plexity of the pattern is the least common multiple divided by
the greatest common divisor. Since the numbers are relatively
prime, the greatest common divisor is 1. The least common multi-
ple is 60 and the ratio of the two is 60/1 or 60.

The following picture shows the major triad and, underneath it,
the points all superimposed on the same line:

(Note that if the first, second, 'and third partials had been included
in this picture, the superimposed points would be no different.)
The largest line segment which will divide all the segments is a

2 Helmholtz, Hermann, Sensations of Tone, Longmans, Green, London,
1885, p. 182.
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segment equal to 1/60th of the whole line. 60 of these segments
constitute the whole line. Thus 60/1, or the least common multiple
divided by the greatest common divisor, is a measure of the com-
plexity of the pattern.

Property I, that is, the distance from the fundamental deter-
mined by the set to the lowest tone of the set, is 1mportant due to
the fact that our experience with the Tower partials is far greater
than our experience with the upper partials; therefore, the lower
the position of the set relafive to its fundamental, the more readily
we are able to grasp its existence as a set. But this is not enough,
for if it were, then the major third, major triad, dominant seventh
chord, and the dominant major ninth chord would all be equally
consonant. Therefore the inner complexity of the set itself must be
considered, for indeed, if the complexity were too great the set
would not be perceived as an entity in itself; the pattern would not
be recognized as a pattern at all, only as chaotic non-penodm
confusion, thus rendering imperceptible the fact that something is
being repeated.

Figure 4, page 22, shows the positions of various familiar sets
relative to the fundamental which generates them. The name of the
set is written at the level of the lowest pitch of the set. In this figure
the fundamental is held constant. Figure 5, page 26, shows a com-
parison of some sets by holding the lowest tone of the set, rather
than the fundamental, constant.

The importance of Property I is shown by the fact that in some
cases, namely, when the lowest tone is not a multiple of 2, Prop-
erty I is independent of octave separation of the tones of the set.
This also explains the apparent relative consonance of intervals
normally considered dissonant, when they are separated by several
octaves, without any necessity for resorting to the clashing of the
upper partials. For if the lowest tone of an interval is a power of
two, then when the upper tone is transposed up an octave, the ratio
is simplified. For example, consider the ratio 4:5, the major third.
If the upper tone is transposed up an octave the ratio become 4:10,
or 2:5, which is simpler and more consonant than the original ratio.

Different sets with different letter names may have the same
value for Property I and a different value for Property II. For
example, the 4:5 major third and the 4:5:6 major triad both
have the value 4 for Property I, while their values for Property I
are 20 and 60 respectively.
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Name Ratio Fund. Picture

P.8th  1:2
P. 12th 1:3
M. 10th 1:5

two 8ths 1:4

P.5th  2:3
P.4th  3:4
M. 3rd 45
M.2nd 8:9

M. triad 4:5:6

m. triad 10:12:15 D

D. triad 5:6:7

F

M.m. 7th 4:5:6:7 F
Figure 5. Comparison of Some Familiar Sets of Tones
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Different sets with different letter names may have the same
value for Property II and a different value for Property I. For
example, the 4:5:6 major triad and the 10:12:15 minor triad both
have 60 as a measure of their complexity. Also, the 25:30:36
diminished triad and the 20:25:30:36 dominant seventh chord
have the same measure of complexity, or Property II, as do the
diminished seventh and dominant minor-ninth chords. This is one
reason why the diminished chords act as incomplete dominants
and are often conmdered as such.

Figure 6, page 28, gives the values of Property I and Property 11
of some familiar sets of tones by way of illustration. A coefficient
of total consonance is also given in this table, which is derived by
taking the sum of Property II and 100 times the value of Property
I. It must be remembered that consonance diminishes as the num-
bers increase.

Summary

1. Tones can be represented by equally spaced points on a line,
thus giving a spatial representation of a temporal phenomenon.

2. The overtone series is a set of such sets of points, but since it
is infinite the picture must always be incomplete.

3. To every set of tones which are represented by integers, it is
possible to assign a consonance value which depends upon the
position of the set relative to its fundamental, and on the ratio
between the least common multiple and the greatest common
divisor of the set. Differences in consonance are quantitative, not
qualitative.
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Name

Ociave

P. 5th

P. 4th

M.
M.

m.

Figure 6. Consonance Values

m
m
M
M
M
m
m.
A
D
A
D
M

6th
3rd
3rd

. 6th
. 7th
. 2nd
. Tth
. 2nd
. 7th
2nd
. 4th
. 5th
. 4th
. 5th

. triad

Numbers
1:2
2:3
3:4
3:5
4:5
5:6
5:8
5:9
8:9
8:15
9:10
9:16
15:16
18:25
25:36
32:45

' 45:64

4:5:6
5:6:8
3:4:5

Letters

FF
FC
CF
FD
FA
DF
AF

b
FE

b
EF
FE
b

EF

b
FE
EF
FB
BF
FB
BF
FAC
ACF
CFA

28
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I
2
6
12
15
20
30
40
45
72
120
90
144
240
450
900
144
288
60
120
60

Total

Consonance Consonance
Properties  Coefficient
I

(100xT) +II
102
206
312
315
420
530
540
545
872
920
990

1044
1740
2250
3400
3344
4788
460
620
360



Total
Consonance Consonance
Properties  Coefficient

Name = Numbers Letters I 1 (100xI) +II
m. triad 6:7:9 FABC 6 126 726
m, triad 10:12:15 FAEC 10 60 1060
12:1520 . — ACF 12 60 1260
15:20:24 CEA 15 120 1620
M.um, 7th 4:5:6:7 FACE 4 420 820
M.m. 7th 20:25:30:36 _FACEb 20 900 2900
25:30:36:40 ACEF 25 1800 4300
15:18:20:25 CEFA 15 900 2400
18:20:25:30 EFAC 18 900 2700
D. triad  5:6:7 FAC 5 210 710
D.triad  25:30:36 , FAC 25 900 3400
A. triad  16:20:25 FACT 16 400 2000
m.m. 7th 10:12:15:18 FACE 10 180 1180
% D. 7th 25:30:36:45 FACE 25 900 3400
M. Oth  20:25:30:36:45 'FACE"G 20 900 2900
b bbb

D. 7th  125:150:180:216 FACE 125 5400 17900
: b b

m. 9th  100:125:150:180:216 FACEG 100 5400 15400
cluster  8:9:10 FGA 8 360 1160

Figure 6. Consonance Values (continued)
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Chapter Three

Roots

NEARLY EVERYONE from Pythagoras to Bobbitt ! has accepted the
fact that consonance is in some way dependent upon the integers
which express the relative frequencies of a set of tones. But what
of the idea of root? Does it also have a basis in the physical world
of sound, as consonance does, or is it just a terminological conven-
tion which once was observed and was later discarded in favor of
other equally arbitrary terminological conventions? Is the root the
lowest tone of a chord composed of superposed thirds when it is
arranged in closed position? Or is it, as Hindemith maintians,? a
property of intervals as well, and therefore equally present in
nearly all sets of tones?

My answers to these questions are that roots are not arbitrary
terminological conveniences, that they are present in the physical
world as properties of some intervals and some larger sets of
tones, and that they are perceived in music as being relatively
important tones, or tones which are more important than their
neighbors. Some sets of tones have roots. and others do not. Some
sets of tones have several conflicting roots which cancel out each
other. Some sets of tones have stronger roots than other sets. The
root of a set of superposed thirds is not necessarily the lowest tone;
such a set may or may not have a root.

As we have seen, all sets of tones can be expressed as sets of
integers. Thus there exists a tone represented by 1 which generates
all the tones of the set; it is analogous to the fundamental of an
overtone series. A set will be said to have a root if this funda-
mental tone, or an octave transposition of it, is contained in the

1 Bobbitt, Richard, The Physical Basis of Intervallic Quality and its
Application to the Problem of Dissonance, Journal of Music Theory, Vol. I11,
1959, Yale School of Music.

2 Hindemith, Paul, The Craft of Musical Composition, Schoot and Co.,
London, 1942, Vol. I, p. 87.

30



set. Every octave transposition of the fundamental is a power of 2,
the fundamental itself being 2°, or 1. This tone, if it exists, is the
root of the set.

Consider the simplest case, where the sets have only two mem-
bers. The root of such a set, if it exists, will be, then, the tone
which is represented by the smallest power of 2. If the interval
contains no power of 2, then it does not contain its fundamental or
an octave of its fundamental, and therefore it has no root. For
example, the 2:3 fifth has its lowest tone as root, for 2 equals 21
and 3 is not a power of 2. The minor third, 5:6, has no root, for
neither 6 nor 5 is a power of 2.

Figure 7 shows some intervals whose ratios include a power of
2.

0 o1 ,1 2 .2 3 L3
20 27 2 3 2 2° 2

2
| / 1 N,
gﬂ& 3 Z e X —
= 2 b —g o - o —
1:2 2:3 ‘3:4 . 4:5 4:7 - 5:8 7:8 8:9
23 \’24 24 24 ?5 35 ‘26' 26
———re———r—

8:15  9:16 15:16  16:27 27:32  32:45 45:64 64:81

27 9T 28 59 210
\\ L ] — ’I' \\ ! ’I
L % ) \“‘ JD “3’ \ﬁ :: -

)
81:128  128:243 243:256 512:729 729:1024

Figure 7. Intervals Which Possess a Power of 2

The presence of a power of 2 in the set of integers is a necessary
but not sufficient condition for a chord’s possessing a tone which
will be perceived as being a root. It is not sufficient, for if the
power of 2 is large enough, the fact that it is a root will not be
noticed, since it occurs too far from the fundamental of its over-
tone series. Thus, the diminished fifth is never heard as having a
root, although it can be represented by 32:45, and 32 is 25,
Therefore a coefficient of root strength must be set up. That the
root strength diminishes as the power of 2 increases is not arbi-
trary, but there is some choice between possible scales of diminu-
tion of strength of root. I have chosen one which agrees with my
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hearing and thinking and which, if valid, leads to some interesting
consequences. It is in part an empirical matter, and someone else
might choose another measure.

The following is the scale of diminution of root strength which
will be used here:

Root Root strength coefficient
20 1/ 200 equals 1/1 equals 1
2 1/ 211 equals 1/2 equals .5
22 1/ 222 eqﬁals 1/16 equals .0625
28 1/ 283 equals 1/134217728 equals .0000000008

In general, the root strength of 2» equals ¥2 "n. A root of 28, or of
2 »where nis greater than 2, is so weak that for all practical purposes
it can be ignored. For convenience we shall multiply this scale by
- 100. Thus the root strength coefficient of the octave is 100, that of
the perfect fifth is 50, that of the major third is 6.25. Thus, tones
which can be represented by 2°, 21, or 22 will be regarded as
perceptible roots and all others will not.

According to this scale the major second 8:9 has no perceptible
root; neither does the minor sixth 5:8. The fact that the minor
sixth sounds as though it has a root may possibly be because the
second partial of the lower tone is so strong that it makes the
interval of a 4:5 major third with the upper tone, thus conferring a
secondary root upon the latter of the value 22, This is not true for
the major second. ‘

We can now distinguish four different types of sets of tones: (1)
sets which have no root, for example the minor third, 5:6, the
diminished triad 5:6:7 or 25:30:35, and (2) sets which have one
tone as the only root, for example the major triad 4:5:6, the
dominant seventh chord 4:5:6:7 or 20:25:30:36, the dominant
minor-ninth chord 8:10:12:14:17 or 100:125:150:180:216, (3)
sets which have more than one root, of which a single one pre-
dominates, for example the minor triad 10:12:15, and (4) sets
which have more than one root with no single root predominating,
for example, the augmented triad 16:20:25.
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Sets which have no root will never have one no matter how they
may be inverted. Sets which have only one root will always have
the same root in any inversion; their roots are invariant under
octave transposition of any of the tones. Sets which have more
that one root do not have this property, for octave transposition
alters the power of 2 and thus may strengthen one root relative to
the others.

The procedure for dlscovermg the root of any set of tones is as
follows: '

1. Render the set into integers. In some cases this is difficult to
do, for each additional tone may alter the interpretation which the
mind makes of the stimulus. However, there are cases where it is
easy.

2. Consider all inversions of the set. For each inversion con-

sider all two-membered subsets, tabulating the roots and the
strengths of the roots. Next consider all three-membered subsets
and do the same. Continue this procedure up to and including the
set as a whole.
- 3. Tabulate all the single-rooted subsets. An inversion will be
said to be single rooted if one tone is the root of more and stronger
intervals than any their tone. If there are none, then the set as a
whole is not single-rooted. If one tone is the root of more single-
rooted sets than any other tone, then that tone is the predominant
root of the set as a whole.

As an example we shall carry out the procedure on the minor
triad. Since it has two possible numerical renderings, 6:7:9 and
10:12:15, the results for one will not be decisive; however, in
the event that the results for both are the same, then they will be
decisive.

First consider the 6 7:9 minor triad. The three possible inver-
sions are shown below:

— &——r—12 8 132 14 _
g : " b2 | g - L* m— 9
Root ! T m
values A:2l A:22 a:22

The first arrangément contains 6:9, 6:7, and 7:9 as two-membered
subsets. Of these, only 6:9, which equals 2:3, has a root, and that
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root has the value 2. The three-membered set itself contains no
power of 2. Thus this arrangement is single-rooted and A is the
root. The second arrangement contains 7:12, 7:9, and 9:12 as
two-membered subsets. Of these, only 9:12, which equals 3:4, has
a root, and that root is 22, which is weaker than the root of the
triad in the first arrangement. The three-membered set has no
power of 2. Thus the position is single-rooted with A as the root.
In the third position the two-membered subsets are 9:14, 9:12,
12:14. Of these, only 9:12, which equals 3:4, has a root and that
root is of the value 2 2, The three-membered set has no power of 2. A
is the root of this arrangement, as well as of the other two; therefore
A is clearly the root of the set, independent of its inversion.

In carrying out the same procedure for the 10:12:15 minor
triad the results are as follows: '

- 20 < 20224 .
g,; g +5 Al"l :‘i Y IS [ & Bo— -
Roots A, C A, C A, C
2l 22 22 22 2% 23

A is the predominant root, for, although the second arrangement
has no predominant root, still, the other two arrangements have A
for root. Thus A is the root of the A minor triad no matter which
integral representation is preferred.

It is now possible to distinguish between sets of tones which
constitute chords and sets of tones which do not. Unless such a
distinction is made it is not meaningful to speak about nonchord
tones.

A chord can be said to be a set of tones which, when sounded
simultaneously, or consecutively, appears to constitute a model
for, or variant of, the overtone series. A chord then, will be com-
pounded of tones in a manner similar to that in which the tones
themselves are compounded of partials. There are two properties
by virtue of which sets of tones will appear to constitute such a
model: consonance, and the possession of a single predominant
root analogous to the fundamental. The possession of one of these
properties does not necessarily ensure the possession of the other,
although they are not entirely independent. A certain amount of
consonance is necessary in order that the root be perceived at all,
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because too much dissonance obscures the perception of the com-
pound wave pattern.

Some sets are relatively dissonant but single-rooted; for ex-
ample, the dominant minor-ninth chord. Others, although rela-
tively consonant, may be either multi-rooted or have no root at all;
for example, the dominant major-ninth, which is more consonant
than the minor-ninth, has three different roots. The fact that the
~ minor-ninth has a strong unambiguous root permits the unusually
large dissonance. This suggests a reason why Bach and others
preferred the dominant minor-ninth to the dominant major-ninth.

Sets with a smgle strong root can be more dissonant without
losing their integral identity than can rootless, weak-rooted, or
multi-rooted sets. The strength of a tone as a predominant root
depends upon two thmgs the quantity of subsets which have the
tone as root, and the size of the power of 2 of the root.

The individual tones of single-rooted sets can be more freely
distributed than can those of multi-rooted sets, for single-rooted
sets retain their root, or reference tone, so to speak, and hence
their identity, no matter how the tones are distributed, while multi-
rooted sets may lose their identity under inversion and octave
transposition of individual tones, for their predominant root may
vary under these transformations. This definition of root substanti-
ates the idea of inversion.

A non-chord tone can now be defined quahtatlvely and inde-
pendently of how it is treated in music. Any tone which is added to
a single-rooted chord and which does not form a rooted interval
with any of the tones of the chord is a non-harmonic tone. For
example, if G-flat is added to the chord FAC, then it is a non-
harmonic tone. If E-flat is added to FAC it is a harmonic tone, for
under one numerical representation, 4:7, it forms a rooted interval
with the root of the chord. Under another numerical representa-
tion, 5:9, it does not form a rooted interval with the existing root
and hence is a non-harmonic tone. It has been treated both ways in
music, as a non-harmonic and as a harmonic tone. If D is added to
FAC it cannot be regarded as a non-harmonic tone for it forms a
rooted interval with A, thus changing the essential nature of the
chord. Similarly, the ninth of the minor-ninth chord can be re-
garded as a non-chord tone, while the ninth of the major-ninth
chord cannot.
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Quantity Strength
Pre- of of
domi- rooted predomi-
Funda- nant inter- nant

Name Numbers Letters mental root vals root
octave . .1:2 FF F F 1 100
P.5th  2:3 FC "F F 1 50
P.4th  3:4 FB' B’ B 1 6.25
M.3rd 45 FA F F 1 625
m. 7th  4:7 FE F F 1 6.25
M. triad 4:5:6 FAC F F 2 5625
m. triad  6:7:9 FAC E F 1 50
m. triad 10:12:15 FAC D F 2 475
12:15:20 AI:CF Db - 2 -
15:20:24 CFA D F 1 6.25
M.m. 7th 4:5:6:7 FACE’ F F 3 65
20:25:30:36 FACE D F 2 5625
mm.7th 10:12:15:18 FACE D A 3 6.25
12:15:18:20 ACEF D A 3 s
15:18:20:24 CE"FA'f D - 2 -
9:10:12:15  EFAC D F 3 375
m.m. 7th 27:32:40:48 FAbCE‘b Af Af 2 56.25
16:20:24:27 ACEF A A 2 s62s
20:24:27:32  CEFA’ A A 1 625
24:27:32:40 EFAC A A

2 1250

~ Figure 8. Root Values :
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Quantity Strength
Pre- of of
domi- rooted predomi- .
Funda-nant inter- nant

Name Numbers Letters mental root vals root
o : bbb bb
14 D. 7th 25 :30:36:45 FACE B Ab 2 43.75
bbb bb
30:36:45:50 ACEF B Ab 2 43,75
: bb b bb
. 36:45:50:69‘ CEFA B - 2 -
: ' bbb bb b
» 45:50:60:72 EFAC B A 1 6.25
MM.7th 8:10:12:15  FACE F - 4 -

- 10:12:15:16 ACEF F A 3 50
12:15:16:20 CEFA F - 4 -
15:16:20:24 EFAC F F 3 50

b b
M. 9th. 20:25:30: FACEG D - 4 -
36:45
b b bb
m. 9th' 100:125:150: FACEG B F 2 56.25
180:216
M.tone 8:9:10 FGA F F 1 6.25
cluster
4 o b b b
quartal 9:12:16 FBE E - 2 -
chord )
quintal  4:6:9 FCG F F 2 6.25
chord. v

Figure 8. Root Values (continued)

Thus a chord can be varied by the addition of non-harmonic
tones without losing its identity, if the dissonance is not so great as
to obliterate the perception of the compound waves as a unit in
time. . :

If the tones of a set occur consecutively in time, the importance
of the consonance factor vanishes, for tones which are dissonant
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when sounded simultaneously do not appear to be so when
sounded consecutively. Thus a minor second occurring in a melody
does not confuse the listener by its dissonance, while in a simul-
taneous chord it does. Therefore, the possession of a single pre-
dominant root is the principal criterion for determining what sets
belong together when sounded consecutively in time, and in the
evaluation of scales the consonance factor may be disregarded.

Figure 8, page 36, is a table giving the root values for integral
representations of some familiar sets of tones, and (in some cases)
their inversions. The first column gives the usual name of the set.

 The second column gives the integral representation of the set. The
_third column gives the names of the notes in letters, keeping the
lowest tone of the set at F, except in the case of inversions. The
fourth column gives the letter name of the fundamental which
generates the set. The fifth column gives the predominant root, if
any. This is arrived at by allowing equal-valued roots on different
tones of the set to cancel each other out. The sixth column gives
the quantity of intervals of the set which possess a root with a
strength of 22 or stronger. The seventh column gives the strength
coefficient of the predominant root.

From the table we see that the only smgle-rooted sets investi-
gated are the fifth, fourth, major third, minor seventh, major triad,
minor triad (in its integral representatlon using the seventh par-
‘tial), dominant seventh chord in any representation, dominant
minor-ninth chord in any representation, and the cluster of three
major seconds. The fact that all of these chords except the cluster
have been widely used may be explained by the peculiarly ambiva-
lent character of the major. second, there being three different
candidates for numerical representation of each second. Another
unfortunate property which the major cluster (8:9:10) has is an
excessive quantity of clashing partials of the tones of the set, due
to their close spacing.

The fact that the 10:12:15 minor triad has as its fundamental
the tone a major third below its predommant root, may explain the
effectiveness of the sixth scale step in a minor key.

The only single-rooted sets without non-chord tones whose roots
are 22 or stronger, are the octave, perfect fifth, perfect fourth,
major third, minor seventh, major triad, and the dominant seventh
chord.
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Summary

1. The root of a set of tones, (or that tone which appears to be
the most important) is the tone of the set which is represented by
the lowest power of 2, and is, therefore, either the fundamental
of the set or an octave transposition of that fundamental.

2. Tones having a power of 2 greater than 2 will not be heard
as being roots, for their relation to the fundamental will be too
remote to be perceived.

3. The following types of sets exist: (1) sets with no roots, (2)
sets with one root only, (3) sets with more than one root, of which
one predominates, and (4) sets with more than one root of which
none predominates.

4. A chord is a set of tones which, when sounded simulta-
neously, appears to constitute a model for, or variant of, the over-
tone series. It possesses a single predominant root which corre-
sponds to the fundamental of the series. :

5. A non-chord tone is a tone added to a single-rooted set
which does not form a rooted interval with any tone of the set.

6. The only single-rooted sets whose roots are 22 are stronger,
and which contain no non-chord tones are the octave, perfect fifth,
perfect fourth, major third, minor seventh, major triad, and the
dominant seventh chord. .
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Chapter Four

The Diatonic Set

THE METHOD of determining the root of a set which was established
in Chapter III can also be applied to the larger sets of tones usually
called scales, or keys.

The just diatonic set occurs in seven different arrangements,
similar to the different inversions of a chord, within an octave
range, as shown in figure 9, page 42. To find the root of this set we
need consider only the two-membered subsets and the three-
membered subsets, for the subsets with more members than three
contain no roots of the value 22 or stronger, and thus may be
dxsregarded

The first arrangement of tones, which has F as the lowest tone,
is not single-rooted, for of all the two- and three-membered subsets
those built on F and G have the strongest roots, and they are
equally strong. The second arrangement is single-rooted and the
root is G. The third arrangement, as well as the fourth and fifth
arrangements, are single-rooted and their root is C. The sixth ar-
rangement has F as the single root, while the seventh, like the first,
is dual-rooted, F and G being equally strong roots. Thus only five
of the possible seven positions are single-rooted, and of these,
three have C as the root, one has G as the root, and one has F.
Thus C is the predominant root of the set as a whole.

We notice that the fifth arrangement, in which C is the lowest
tone, is the most consonant arrangement, for it occurs lower in
its own overtone series than do any of the other arrangements. The
C major diatonic set is therefore a set in which the most consonant
position is also root position, (a property it shares with the minor
triad, and the dominant seventh chord, but not the major triad).
The positions of the diatonic set are similar to the inversions of a
chord, and we can speak of root position of the C major set and of
the first to sixth inversions, just as we speak of root positions and
the inversions of the C major triad.
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The difference of root value and degree of consonance in the
different inversions of the diatonic set serves to explain the exis-
tence of the church modes, for the church modes correspond to the
different inversions of the diatonic set.

If a different root-strength scale were used the results would be
similar. But it must be pointed out that if no distinction were made
between stronger and weaker roots, then F, the generating tone of
the Pythagorean diatonic set, would be the root of the diatonic set,
for F is the root of the greater quantity of intervals, while C is the
predominant root of the greater quantity of inversions.

This duality makes possible the symbolic richness of motion in
different directions from the root, or tonic, C. Melodic motion of
tones or roots of chords from C to F is down, in, back toward the
past, the generating tone, while melodic motion of tones or roots
of chords from C to G is up, out, forward.

_The situation is different with the Pythagorean ‘diatonic set:
CDEFGARB = 384:432:486:512:576:648:729 due to the fact that
the Pythogorean third is 64:81, or 2°: 34, and 2 falls far beyond
the range of perceptible roots. The Pythagorean set has no three-
membered subsets with roots sufficiently strong to be worth con-
sidering. It has no single-rooted arrangement. However, if we con-
sider the sets of roots of the different arrangements, the most
consonant one is the set of roots for the arrangement which has A
as the lowest tone, for its two roots are A and C, while all the
other positions have two or three roots at an interval of a major
second. This, plus the fact that the Pythagorean minor third is
more consonant than the Pythagorean major third, may account
for the fact that A, the first letter of the alphabet, was mese to the

Greeks. It was considered by Aristotle to be the most important
tone of the scale:

In all good music mese occurs frequently, and, if they leave it,
they soon return to it, as they do to no other note.!

The arrangement which has C as the lowest tone is the most

consonant arrangement of the Pythagorean set, as it is of the just
diatonic set. . : '

The root distribution of the just and Pythagorean diatonic sets
is shown in Figure 9, page 42.

1 Aristotle, Problems, Book XIX.
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By a similar procedure it can be shown that the pentatomc set
F, G, A, C, D has aroot in just intonation, and that the root is F.
In Pythagorean intonation, the pentatonic set has no single-rooted
arrangements, as is the case in the Pythagorean intonation of the

- diatonic set; but if the sets of roots are considered, it is the DF set,
which occurs in the arrangement having D as the lowest tone,
which is the most consonant arrangement. In the event that it were
to be argued that since the pentatonic set is a subset of the diatonic
set, and therefore its having F as root strengthens F, as against C,
in the diatonic set, it must be pointed out that the diatonic set
includes a pentatonic set on C as well as on F.

I conclude that the diatonic set produces in the hearer a hier-
archy of tones containing a most important tone (call it root or
tonic), and that this root, or tonic, is not a matter of convention,

- for it stems from the inherent properties of the tones of the set and

of the human listener. This root serves as a common measure, a

reference tone, to which the other tones are consciously or uncon-
sciously related by the listener.

Summary

1. The seven tone diatonic major set on C in ]ust intonation has
C as its predominant root.

2. The church modes are to the dlatomc major set as inversions
are to chords.

3. A root is a common measure, or refei'ence tone.
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Chapter Five

The Twelve-Tone Set

NO TWELVE-TONE set has a predominant root. In order to
demonstrate this it is necessary to know what twelve-tone sets
exist, either in practice or conceptually. By “exist conceptually” I
mean: follow from a well-defined method of tone generation which
contains a non-arbitrary statement of cut-off, or when to stop. The
equal-tempered set is well-defined, although its ratios are incom-
mensurable. The Pythagorean twelve-tone set is well defined. But
there is no well-defined just twelve-tone set.

A just set makes use of 1:2 octaves, 2:3 fifths, and 4:5 thirds in
order to arrive at its pitches, the frequencies of which depend upon
the order in which they are derived. What non-arbitrary principle
is to prescribe when a fifth is to be used and when a third? No such
principle has ever been stated.

The fact that the diatonic set has a predominant root, and thus
constitutes a gestalt in itself, suggests a principle of generation of a
just twelve-tone set which is less arbitrary, at least, than any previ-
ous principle. It is the following:

Erect on each tone of a just diatonic set a set identical to it. This
procedure will result in the addition of the tones F-sharp, C-sharp,
D-sha:p, G-sharp, and A-sharp, which are markedly different from
the existing tones, and also a host of other tones which are just a
little different from the existing tones. In order to eliminate these
slightly different tones from the set we can choose for each tone
either the smaller value, or the value which occurs first. If we
choose the value which occurs first, then an order of construction
must be specified, and that is possible to do by the Pythagorean ,
method of successive fifths. However, this decision is somewhat
arbitrary, although well defined, for it assumes a preference, which
cannot be justified easily, for the Pythagorean set over the just set.

The values for these sets are the following:
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1 128 2 256 8 1024 16 128 4 512 8 32
11353 25 9 75 27 225 5 675 15 45 smallest
1

128 2 16 8 64 16 128 4 512 8 32

Even if we were to accept one of these sets as being non-
arbitrary, which seems a dubious procedure, still, all possible con-
tenders, arbitrary or non-arbitrary, for a just twelve-tone set, allow
a close approximation to a major triad to be built on all tones of
the sets, thus rendering them centerless. Any difference in quantity
and quality of roots occurs well below the level of perceptible root
strength (if my scale of root strength is accepted), while among
the perceptible roots the orientation of each tone is the same as
any other, with the exception of C-sharp and A-sharp. These two
tones require an E-sharp which is not in the set in order to build a
major triad on them.

The Pythagorean twelve-tone set has no root, for each of its
inversions is identical with all the others with regard to perceptible
roots. The equal-tempered set has no root, for none of its subsets
is commensurable.

Summary
1. The only non-arbitrary well-defined twelve-tone sets which
have been considered by theorists are the Pythagorean twelve-tone

set and the equal-tempered twelve-tone set.
2. Neither of these has a predominant root.
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Chapter Six
The Nineteen-Tone Set

THERE ARE an infinite number of ways to create sets of tones larger
than the twelve-tone set, for the octave can be divided arbitrarily
into as many different tones as may be desired. But are there any
non-arbitrary sets having more than twelve tones? It has been
maintained that the nineteen-tone set is such a set, an organic
development growing out of, but not destroying, the pentatonic
and diatonic sets.?

The argument will be made here that this is not the case; on the
contrary, the nineteen tone set is simply an arbitrary division of
the octave into nineteen equal parts bearing no more organic rela-
tionship to the diatonic and pentatonic sets than would the division
of the octave into twenty, twenty-one, twenty-two, etc., equal parts.

One way in which a set of tones can be consxdered to be an
outgrowth of the diatonic and pentatonic sets is by carrying the
principle by which these sets were derived even farther than it was
carried in deriving the original sets. The nineteen-tone set is not
the result of such a process; for the principle of tone derivation of
the Pythagorean system, of which the nineteen-tone set purports to
be an extension, is the following:

2:3 fifths are superimposed until a tone is reached which comes
closer to coinciding with a tone derived by successive superimposi-
tion of 1:2 octaves in the same du:ecuon, than any of the preceding
tones. Figure 10 presents a logarithmic picture of this process.

- Fifths

1 23 4 5 6 7 8910 M 1213 M 151617 1819 20M
f € oD At s fFctotol Al tf ol <t A 1t pIBS
4__61!\! L1 L1 1.1 1. 1 .1 1 1 - 1.1
N T\ T 1 1 A 4 T 1 § RS
£ F O F O F £ P F# rOF F ¢ '
1 2 3 4 5 & 7 8 9 10 n 1

Octaves
Figure 10. Loganthrmc Picture of the (extended) Pythagorean Scale

1 Yasser, Joseph A Theory of Evolving Tonality, American Library of
Musicology, N.Y., 1932,
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Those tones are circled which are closer to an octave transposition
of the generating tone than any tone which precedes them. E is
such a tone, and E-sharp is also such a tone, but E-double-sharp,
the nineteenth fifth, is not such a tone. It can be shown by con-
tinued fractions that the next such tone is the forty-first fifth.

This fifth-derived tone which is closer to an octave-derived tone
than any of its predecessors is then declared identical to the tone it
is close to, which means that the small difference-interval is con-
sidered to be beyond the perception threshold and is thus ignored.

The pentatonic set is justified by this process, and so is the equal
tempered twelve-tone set, but the nineteen-tone set is not, for the
interval between E-double-sharp and F is not smaller than any
preceding interval. In fact, it is so large that two other previously
derived tones occur between it and the octave transposition of the
generating tone, as shown in Figure 11.

QO « @ N ")
8 o S 9 2
- - [ -
11 11 ]
P b g &
io 212 §l§19 22
20 219 212 230 23

Flgure 11. Tones Close to F

~Therefore, if E-double-sharp were to be declared identical with
F, so also should these other two intervening tones.
~ Another way in which a set of tones could be considered to be
an outgrowth of the diatonic and pentatonic sets might be that it
improves the tuning of these sets by the addition of tones which
- more closely approximate the paradigm intervals of the set. This is
not the case with the nineteen-tone equal-tempered set, for the fifth,
the generating interval of the whole Pythagorean system, is five
cents farther from the pure fifth than is the fifth of the equal-
tempered twelve-tone set. The following is a comparison of fifths
-.and major thirds in cents:

twelve-tone nineteen-tone
pure equal-tempered  equal-tempered
fifth: , 702 700 693

major third: . 386 400 379
' 48



The nineteen-tone equal-tempered set increases the accuracy of
the major third at the expense of decreasing the accuracy of a
more fundamental interval.

The argument has been made in favor of the nineteen-tone set
that it brings in a new smallest interval without losing the old
intervals, which enriches the system heretofore limited by the
human perception threshold, and that the man of the future will be
able to differentiate it from the other intervals, just as the diatonic
set introduces the minor second as a refinement over. the major
second, the smallest interval of the pentatonic set.

This new smallest paradigm interval introduced by the nineteen-
tone set is the Pythagorean comma, A-flat to G-sharp, which is a
negative quantity when considered with reference to the diatonic
sets. A negative interval can exist only in the imagination, not on a
keyboard. No matter how fine the hearing of the man of the future
might be, he never could hear this. Were it to be argued that the
negativity of this interval is only the result of diatonic language,
the reply is that the diatonic language was constructed to fit the
diatonic set; the fact that sharps and flats are in the language
results from the fact that the diatonic set forms a gestalt in itself by
virtue of its single-rootedness. If the nineteen-tone set is not con-
sidered to have grown organically out of the diatonic set, then the
Pythagorean comma may indeed be a new smallest positive inter-
val, the existence of which in the nineteen-tone set destroys any
organic connection between it and the diatonic and pentatonic sets.

The nineteen-tone equal-tempered set, like any other equal-
tempered set, has no root, since each tone is oriented to all the
other tones in exactly the same way. Since it is not an organic
development of the pentatonic and diatonic systems, neither does it

~ have a root by virtue of historical association with those rooted sets.

Summary

1. The nineteen-tone set is not an organic development out of
the pentatonic and diatonic sets, but an arbitrary division of the
octave into nineteen equal intervals.

2. The nineteen-tone set has no predominant root either by
virtue of its construction or of its history.
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Chapter Seven
Mode And Key

SINCE THE diatonic set has a single predominant root it is possible
to clarify the meaning of the word “mode”, and thus to distinguish
between mode and key in music which is not restricted to the range
of an octave. “Key” will be defined as the cardinal diatonic set,
and “mode” as the ordinal diatonic set. Thus a key consists of a
diatonic set of tones in any order of occurrence, while a mode is a
diatonic set of tones, ordered in time in such a way as to empha-
size a particular tone of the set. To each key, then, there corre-
spond seven different modes.

The various means of establishing this order of importance of
tones are numerous. They reach from crude emphasis to the sub-
tler and far more effective means of combining tones in a manner
analogous to the inner structure of the single tone. :

A tone can be emphasized by deliberate accent, orchestration,
- frequency of occurrence, duration, melodic prominence as peak-
tone, or tone skipped to or away from, metrical position, the use of
its leading-tone, trilling, and ornamentation. But the strongest and
most effective way to emphasize a tone, a way which has been lost
in much contemporary music, is emphasis by the use of sets of
tones which have the given tone as root. These sets may be com-
posed of tones which are members of single-rooted chords, or they
may be composed of roots or tonics themselves, as in the case of
the V-I harmonic progression.

Emphasis on a tone which is the result of that tone’s being the
root of a set will be called intrinsic emphasis. All other emphasis
will be called extrinsic. ‘

When the intrinsic and extrinsic factors emphasize the same
tone, then the hierarchy of tones will be the clearest. Complete
clarity, however, is not always desirable; it varies in a composition
as a whole as well as from composition to composition. The minor
triad is not as completely clear as is the major triad, since in one
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numerical representation it has two roots; perhaps some of its
effectiveness stems from this fact.

When a diatonic set is used in such a way that a tone other than
its root is consistently emphasized, then we have what is often
called modal music. This can be achieved by range restriction, as
in the case of Gregorian chant, or, when range restriction is elimi-
nated, by employing the above means of emphasis.

Altered tones change the set itself, and thus the mode as well. It
is possible to write music in all seven modes of a key without the
alteration of a single tone. The relative difficulty of establishing
each mode can be seen in Figure 9, page 42. The tones with the
greatest quantity of roots are the tones on which modes can most
easily be established. The most difficult mode to establish is the
one emphasizing the seventh scale step of the diatonic set, be-
cause the most effective means of emphasis is not available to it,
since it is not the root of any subset. Therefore, if it is to be estab-
lished at all, it must be by the more brutal, obvious, and less ef-
fective means of loudness, frequency, duration, etc., as well as
avoidance of the use of rooted intervals on other tones. This ac-
counts for its virtual absence from the musical literature before
the twentieth century.

There are, then, four different possibilities of variation of dia-
tonic sets within the tonal framework of the twelve-tone equal-
tempered set: o

1. The cardinal set, or key, may be changed, while the mode
remains the same. For example, changing from C major to G major.

2. The ordinal set, or mode, may be changed, while the cardinal
set, or key, remains the same. For example, changing from C
major (Ionian mode of C) to the Aeolian mode of C, which
emphasizes A. : :

3. The cardinal set, or key, and the ordinal set, or mode, may
be changed, while the tone which is emphasized remains the same.
For example, changing from C major (Ionian) to the Aeolian
mode of E-flat which emphasizes C. .

4. The key, the mode, and the emphasized tone may all change,
while nothing remains constant. For example, changing from C
major to the Aeolian mode of B which emphasizes G-sharp.

Inner variations of the diatonic set can also be made. The har-
monic minor set is such a variation. It is not the same as the
Aeolian mode, despite the fact that it grew out of it, and has a

51



similar character. By the single operation of substituting G-sharp
for G in the Aeolian mode of what can now be called the key of C,
two ends are achieved: A is given a leading-tone, which serves to
emphasize A, and C, the previous root of the set, is deprived of its
fifth, G, which was the principal means of emphasizing C. Thus the
substitution of G-sharp for G in the C major set, changes the set
and thus also the center of the set.

By applying the method of root determination used in Chapter
IV to the harmonic minor set, we find that A is its predominant
root, with E and F the next most important roots.

Consider all the sets which occur as a result of emphasizing the
principal note of the modes by means of a lower leading-tone. The
resulting sets are the following:

Dorian: D EF G A B Csharp
Phrygian: E F G A B C D-sharp
Lydian: FGABCDE

Mixolydian: G A B C D E F-sharp
Aeolian: A B CDE F G-sharp
Locrian: B CDEF G Assharp
Tonian: CDEFGARB

The Ionian, Aeolian, Lydian, and Mixolydian have already been
considered implicitly: A leading-tone is already present for F and
C; giving G a leading-tone does not change the inner nature of the
set but only transposes it. The predominant roots of the Aeolian
and Ionian sets have been shown to be A and C.

The other three sets however, are genuinely different from each
other and require separate consideration. When the roots from

* these sets are extracted a reason why the Aeolian and Ionian
modes took precedence over all the other modes during the seven-

_teenth, eighteenth, and nineteenth centuries appears. It is that only
these sets have single predominant roots, with the tone indicated by
the mode as root. The sets derived by raising the leading-tone of
D, E, and B have no predominant root, and the roots of the differ-
ent single-rooted inversions do not occur on the principal tone of
-the mode. The following chart gives the root distribution of the
different sets:
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Roots of single-rooted inversions

Step of mode in bass: 1 2 3 4 5 6 7
Dorian E G - - A - -
Phrygian F F A C C C F
Aeolian A - E - - F A
Locrian CcC €C - G G G. C

Figure 12. Root Distributions of Sets Derived from Modes

Investigation of the roots of other sets having more than seven
tones shows that the addition of F-sharp to the diatonic set does
not completely destroy its hierarchical properties, although it does
weaken them. C is still the root of this set, but not so strongly as it
is the root of the seven-tone set. Any further additions of sharps to
the diatonic sets results in the obliteration of the single predomi-
nant root. There is little historical application of the set containing
F and F-sharp, for in most music the introduction of F-sharp takes
place as a substitution for F-natural, rather than as an addition to
the set. In music of the later nineteenth and twentieth centuries in
which this is not the case, not only is F-sharp added to the set but
so also are all the other accidentals, thus rendering the twelve-tone

-set, rather than the eight-tone set including F-sharp, the basis for
the music.

Summary

1. “Key” is defined as the diatonic set of tones, independent of
their order of occurrence. It is thus a cardinal set of tones. Mode is
defined as the ordinal set, for it is a function not only of the tones
used, but of the order of their occurrence in time. For each seven-
tone cardinal set or key there exxst seven different ordinal sets or
modes.

2. There are four qualitatively different types of changes ‘be-
tween key and mode.

3. The alteration of the fifth scale step of the diatonic key to
provxde a leading tone for the sixth scale step changes the set from
major to harmonic minor. This is the only set derived in a similar
manner, which has a single predommant root. This explains the
importance of the major and minor keys.
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Chapter Eight
Analysis

ROMAN NUMERAL analysis of music is foundering on the following
paradox: “The altered tone is in the key; and the altered tone is
not in the key.” The very existence of the Roman numeral as a
meaningful symbol depends upon the exclusion of altered tones
from the key. Thus it is a violation of the language to speak of a
“II sharp 4” chord, for if the 4 is sharped, then the chord is no
longer a II chord. As we shall see, however, it has a metaphorical
justification.

Every good metaphor can be translated into a non-metaphorical
statement which is literally true. If people fail to do this, the
metaphorical truth will be cast out along with the literal falsity, as
the Roman numeral is being cast out of musical analysis to the
detriment of that analysis.

The fact that the diatonic set (the key without altered tones)
has a root, while the twelve-tone set (the key with altered tones)
does not, enables us to translate the metaphor implicit in the above
contradiction, whose literal falsity must be accepted if meaningful
language is to survive. :

Since the diatonic set is single-rooted it forms a hierarchical
entity in itself, each of whose members has a particular position in
the hierarchy. This position in the hierarchy we shall call the
“function” of the tone, and assign a number to it from 1 to 7, as
has been done traditionally. The triads built upon these functional
scale steps will be numbered by Roman numerals in order to dis-
tinguish them from the Arabic numerals indicating the single tone,
as has also been done traditionally. A tone, then, (or a single-
rooted chord with that tone as a root), if it belongs to a single-
rooted set, has a particular function in that set. “Function™ has
‘usually been used with reference to the diatonic major and ‘minor
sets. We see that in this generalized sense of the word its meaning
might extend to the hierarchical position of chord members rela-
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tive to the root of the chord. It might even be extended to include
the position of the partials relative to their fundamental.

The Roman numeral has in the past been used in two different
senses by analysts: (1) It has been used merely as a label to
differentiate chords from each other, and (2) it has been used as
a name for a function. When it is used in the first sense the altered
tone is perfectly acceptable, for we can label chords relative to any
reference point, as long as we don’t change the reference point
without mentioning the fact. Thus one can interpret any set of
three tones as constituting any Roman numeral of any key, when
the Roman numeral is used purely nominally, as a label. Such
Roman numeral labels can be applied to a twelve-tone composi-
tion, or to any composition at all; for by means of enharmonic
equivalence it is possible to spell any three tones as a triad. But if
this is done, it is only an éxercise in the application of an arbitrary
terminology and yields no information whatever about the music
to which it is applied.

If, on the other hand, the Roman numeral is used as a name for
a function, its use reveals regularities which occur in the music of
some historical periods and which do not occur in the music of
other historical periods. The discovery of such regularities or ab-
sence of such regularities is the chief purpose of the analysis of
music. Therefore, the Roman numeral as a functional label is
a valuable tool for the music theorist.

The Roman numeral can exist as a name for a function only if
altered tones are not recognized as being in the key. Possibly in the
attempt to demonstrate non-existent similarities between contem-
porary and classical music, the Roman numeral has been applied
functionally to music to which it is only applicable as a label. But
it should either be used as a function or not at all, because if it is
not used as a function it can be applied equally to any combination
of musical tones, and thus have no purpose whatsoever.

Since the diatonic set is a real entity, a gestalt in itself, the whole
of which is greater than the sum of its parts, such sets can. be
regarded as units, and combined, as chords can be combined, into
higher order sets which may still retain the same root. Thus a
diatonic set on C can be followed by a diatonic set on G, and the
sum of the two sets will retain the root C, just as the combination
of the major triads on C and on G retains C as the root. Other
combinations of diatonic sets, similar.to combinations of single-
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rooted triads, can be made as follows: Sets on C, F, and G can be
formed analogous to the structure of the diatonic set itself as a
combination of major triads in C, F, and G. Diatonic major sets
on C, F, and G can be combined with diatonic minor (harmonic
minor) sets on D, E, and A to form a structure analogous to the
structure of the diatonic set itself as a combination of major triads
on 'C, F, and G and minor triads on D, E, and A. Similarly,
diatonic minor sets on C, F, and G can be combined with diatonic
major sets on A-flat, B-flat, and E-flat to form a structure analo-
gous to the Aeolian mode of the major set.

"Each of these diatonic sets is a function, in the sense we have
defined, of the higher order set produced by their combination.
Therefore Roman numerals, analogous to the Roman numerals
applied to chords, can be applied to keys as well. But these two
symbols must be differentiated from each other, for, as will be
shown, key progressions do not follow the same patterns as do
chord progressions. It is the confusion of these two different mean-
ings of the Roman numeral which has led to the paradox resulting
in the abandonment of the Roman numeral. In order to differenti-
ate between Roman numerals which apply to chords and those
which shall apply to keys, we shall attach an index to the latter; for
example: V’, I’ indicates the progression from the dominant key to
the tonic key, while V, I indicates the progression from the dominant
chord to the tonic chord, and 5, 1 indicates the melodic progression
from the fifth scale-step to the tonic.

The higher-order set will be called a second-order key. This
higher-order set itself may or may not be combined into a further
higher-order set. If it is, then it in turn becomes a function of the
next higher-order set, and will be designated by a Roman numeral
followed by two superscripts (). This procedure can be carried
on indefinitely if the music warrants it. Thus the tones CD EF G
ABare1234567 of the key of C; G B D is V of the key of C,
and the set of tones G A B C D E F-sharp is V’ of the second-
order key of C. ’

In compounding sets into a minor second-order key it is a prob-
lem whether or not to call the compound a minor second-order key
or the Aeolian mode of a major second-order key, for the major
dominant occurs only at the level of the key, not at the level of the
second-order key. It seems advisable, however, to call it a minor
second-order key, even though it is really the Aeolian mode of the
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relative major second-order key, because a consistency of function
can thereby be maintained, due to the fact that the principal
chordal functions of a minor key are I, IV, and V, ]ust as they are
of a major key.

If we recognize the fact that an altered tone cannot be added to
a set without changing the very nature of the set, and hence the
distribution of the Roman numerals, then we can proceed to make
meaningful tonal analyses of music without recourse to a private
mysterious intuitive process.

In order to do this it is necessary to observe set changes when
they take place, whether the sets are chords or keys. They do take
place increasingly frequently from the sixteenth century to the
present.

The graphs on pages 58 to 63 show the distribution of diatonic
sets in music of different periods. In the event that a group of tones
belongs to several different sets, that set was chosen. which lasted
the longest. If this stipulation were not made, it would be possible
to interpret each different tone as belonging to a different set. The
sets are either the diatonic major or the harmonic minor. The only
tones apart from these sets whose occurrences do not result in a
change of set, are (1) the raised sixth scale-step in minor, when it
is next to the raised seventh scale-step, (2) tones which act as
lower leading-tones to each tone of the tonic or dominant triads,
(3) chromatic runs, or glissandi. When any of these exceptions
occurs it is marked by an asterisk. ,

In the graphs, the line marked A is the graph of the tonics of the
keys. A double line occuring at a particular level indicates the
relative minor set of the major set indicated by the letters marking
the particular level. The line marked B is the graph of the tonics of
the second-order keys, if there are any. The line marked C is the
graph of the tonics of the third-order keys, if such there be. The
Roman numerals, where they exist, of the second-order keys and
higher-order keys are given for each graph.

These graphs do not show the root movement of chords, but
only the root movement of the larger sets. On each of the hori-
zontal levels further division could be made according to chord
progression, and even to the melodic progressions of single tones.
Furthermore, these tonal levels could be divided still further ac-
cording to the distributions and intensities of the partial tones. The

-sum of these partial tones is the picture which is shown by the

57



Key
RAPH)
Al f
B ] ]
= o
AWMU TN A
(B-GRAPH)
-
PRIl
{A~GRA

F=i{VI'V ' VIl or B[ irv?)’ br El=1

F = 1{IN’If or 2T

Figure 13. Top: Lucem Tuam by John Redford, 1485-1545; Bottom:
Alla Riva del Tebro by Palestrina

‘oscillograph when it records sound wave patterns. Thus the way
may be opened to a method of abstracting tonal hierarchies from
the purely mechanical rendering of sound by an oscillograph.

At the melodic level a further complication appears which is
negligible with regard to roots and keys. It is the absolute differ~
ences in pitch which become relevant at this level. For in a melody
there is a great difference between a tone and its upper octave,
while at the level of generality of the root, it can be ignored. At the
melodic level we have a new and absolute up and down entering
- into the picture. | '
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These graphs are intended to show the larger structure which
has too often been ignored in favor of the detailed structure, and to
point out the enormous difference between the music preceding the
seventeenth century and that following the nineteenth century.

Some important properties which can be determined by such
analyses as these are the following:

1. Whether or not the composition can be compounded into a
single higher order set. If it can, then it is an example of a compo-
sition which unfolds a single tone.

2. The degree of tonal complexity of music, which is measured
precisely by the number of superscripts of the Roman numeral of
the highest level key which can be compounded. This number is an
indication of the quahty of simultaneous roots which may exist
in a composition. This is a measure of its hierarchical order. It
varies inversely as the tonal entropy (to be discussed in Chapter
XII).

3. The rate of change of keys.

4. The predominant interval between adjacent keys, if such an
interval exists. In the Bach examples this intetval is the fifth.

5. The presence or absence of any keys at all.
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~ The fact that a key is a single-rooted unit serves to explain the
importance of the tritone, an interval which, in isolation, or in a
non-diatonic context, seems to be of little value due to its relative
dissonance, ambiguity of numerical representation, and rootless-
ness. But its value, like that of the diminished triad and the dimin-
ished seventh chord, comes from another source: as Schenker
points out,! it is univalent, that is, only one such sound occurs in a

1 Schenkér, Heinrich, Harmony, Chicago .University Press, Chicago, 1954,
p. 127, ‘
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major key. Therefore, it has a clarifying function with respect to
the key, despite its ambiguous nature in isolation. This may serve
to explain the importance of the VII ¢-I cadence, which preceded
the V-I cadence, in fourteenth and early fifteenth century poly-
phony. It may also explain the contemporary scorn for the dimin-
ished seventh chord, for it is valuable only in a diatonic context.

‘While the seventh scale-step exists as a function of a diatonic
major set of tones, VII does not exist as a chordal function of a
major key, for the diminished triad is rootless. Due to the univa-
lence of the tritone, however, VII can be considered an incomplete
V, as can the diminished seventh chord. Theorists have often con-
sidered them thus. In a minor key the diminished triad is more
ambiguous than it is in a major key, for it exists on two different
scale steps. The diminished triad on the seventh scale step of the
minor key is an incomplete dominant, as it is in the major key.
Even the diminished triad on the second scale step of a minor key
has some dominant character, due to its being a part of the single-
rooted dominant ninth chord. ‘

In a major higher-order key there is no VII’ function: as in a
minor higher-order key there is no II’ function, due to the fact that
the triads on the analogous scale steps are diminished.

One source of the error in contemporary music theory which
uses Roman numerals, yet permits the key to consist of the twelve-
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tone rootless set, lies in the failure to distinguish between the
different orders of single-rooted sets: (1) the chord, (2) the dia-
tonic set or key, (3) the higher-order key, which is composed of
keys, or of other higher-order keys. Because all of these entities
have a common property, namely, the possession of a single per-
ceptible common measure or predominant root, they were not
differentiated from each other. Furthermore, as composers in
the late nineteenth and twentieth centuries gradually substituted the
twelve tone rootless set for groups of seven tone diatonic sets, the
theorists abandoned their clear definitions of key as seven particular
tones and allowed the experience of hearing a tonal center to be
the defining property of key. Thus a subjective, private definition of
the central concept of music theory supplanted the objective, pub-
lic one. The idea of key was distorted to fit the practice of com-
posers, since people did not want to admit that the practice no
longer fit the idea.

‘The differentiation between the Roman numeral which stands
for a chord in a key, and the Roman numeral which stands for a
key in a higher-order key, allows us to make the following observa-
tions, regarding progressions of chords and keys:

‘1. The V” which indicates the dominant key of a minor second-
order key is a minor key, while the V which indicates a triad in a
minor key is major. ,

2. Many kinds of third relation can now be differentiated ac-
cording to the relationship between the keys in which the chordal
third relation takes place, as well as the relationships between the
chords themselves. For example, in the second movement of the
Schubert sonata in B-flat, Opus Posthumous, D. 920, third rela-
tion occurs between a G-sharp major triad and a C major triad. At
the same point in time a key change from C-sharp minor to C
major occurs. This can be regarded as a form of change of second-
order mode (and key!) from major to the parallel minor (which
occurs so frequently in the music of Schubert), for the key of C-
sharp minor is VI’ in the second-order key of E major, while the
key of C major is VI in the second-order key of E minor. Thus we

can distinguish between third relation which takes place as a result -

of a change from the major to the minor second-order mode, and
third relation which does not; as for example, the third relation
between the first two. chords (C major to A major) of the last
movement of the Schumann Fantasy in C. '
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3. Progtession from V to IV between chords of a key is rare in
the Baroque and classical and Romantic periods, while progression
from V” to TV’ between keys is frequent in the same periods.

4. Varying opinions as to the importance of the III function can
now be resolved. For within a key the III triad is of little impor-
tance due to the remoteness of its root from the root or tonic of the
key. But IIV, as applied to a key which is a member of a higher-
order key, is extremely important if that higher-order key is minor,
for III’ of a minor higher-order key is the tonic of the relative
major higher-order key. A frequent key progression within a minor
second-order key in Bach’s music is I/, I/, V’, which substantiates
Schenker’s theory of the unfolding triad.

5..A temporal overlap between keys may take place, resulting
in a transitional bitonal area. This is similar to what happens
melodically when a suspension occurs. It is also similar to what
happens harmonically when a chordal suspension occurs, or when
V and I occur simultaneously, as they often do even in Bach. The
most frequent such temporal overlap with respect to keys is
that which occurs in the augmented sixth chords. These chords are
bitonal, for they contain the leading tone of the dominant key, in
addition to tones of the tonic key, among which is the sixth scale
step, which is not a member of the dominant key. Key overlaps
occur especially frequently in Brahms, along with metrical and
chordal overlaps.

Just -as we can speak of non-chord tones, or non-harmonic
tones, so also can we speak of non-key tones. They can arise only
in music which uses both single-rooted chords and keys, for if they
occur in music which uses only keys (for example, Gregorian
chant) they change the key. If, in a passage where the key has
been established by the presence of the set and the principal
chords of the set, we find either the tonic or the dominant chord in
arpeggiated form with a leading-tone given to each tone of the
chord, then these leading-tones are non-key tomes. They act as
ornaments to the chord tones. If they occur as ornaments to any
other chord than the tonic or dominant, they may shift the empha-
sis to the key of that chord, and thus we can no longer call them
non-key tones.



Summary

1. The paradox of Roman numeral analysis can be eliminated
by differentiating between keys which are sets of tones, and higher
order keys which are sets of keys.

2. “Function” is defined as a particular position in a single-
rooted diatonic set.

3. Roman numeral analysis, in which the Roman numeral is a
name for a function leads to increased knowledge of the music
bemg analysed. Nominal Roman numeral analys1s in which the
Roman numeral is only a label for a set of tones is of no value,
except as a terminological exercise, for it can be applied indiscrim-
inately to any music whatever by means of enharmonic equivalence.

4. Some music of the late nineteenth and twentieth centuries
is qualitatively different from all preceding western music with
respect to the use and compounding of single-rooted sets of tones.

5. The tritone is important, not because of its properties out of
context, but because there is only one in any major diatonic set.

6. The key as a function of a higher-order key, is treated differ-
ently from a chord as a function of a key.

7. Temporal overlap between keys can exist, as, for example, in
the augmented sixth chords.

8. One of the most important style determining properues
which has frequently been overlooked by theorists is the way in
which diatonic sets, if present, are combined.
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Chapter Nine

Mo&ulation

IT IS now possible to' define modulation (as it has often been
defined in the past) as a change of the basic diatonic set. Such
modulations are shown on the graphs by the change in the horizon-
tal level of the line of the A-graph of each composition. (See
pages 58-63.) A modulation also takes place on the A-graph when
the line changes from single to double, thus indicating a change
from major to the relative minor sets, or vice versa. This is the
closest possible modulation, the change of a set to its relative set,
as the language shows. For, while it is a change of set, it is also
reminiscent of the change of mode within a single set, from Ionian
to Aeolian.

Higher order analogous “modulations” which are similar to, but
not identical with, those between changes of the basic set can also
be distinguished. These are the changes between the higher-order
sets which are demonstrated by the B-graph of each composition.

It is even possible to speak of an analogue of modulation which
occurs when chords change, or even when the single tone changes.
In these latter two cases we need no word for it, but in the case of
the key change we do need the word. For the changes in the higher-
order keys depend for their existence upon the prior existence of
the changes between keys. Therefore, whatever we choose to call
the change between higher-order keys, the word “modulation”
should be reserved for the changes between basic diatonic single-
rooted sets.

It would be a semantical absurdity to take the name away from
a basic idea and apply it instead to the derivative ideas, which
depend for their very existence upon the prior existence of the
basic idea. '

If this definition of “modulation” is accepted, then we can pro-
ceed to distinguish between diatonic and chromatic modulations.

67



Diatonic modulation is that which takes place between two keys
which are functionally related to each other as are the triads of a
single key. All other modulations are chromatic. According to this
definition both the Bach examples are diatonic. Similar graphs of
most late romantic and contemporary compositions show them
to be highly chromatic.

This definition of modulation makes it possible to attempt a
connection between the semantics, or emotional meaning, of music
and the syntax, or pitch relationships, of music. For the same
graph which displays the syntactical factor of the relationships
between sets can also be used to demonstrate the emotional quali-
ties of the music. I conjecture that, other things being equal, which
they never are, a change of set up a fifth is positive (happy, bright,
hopeful) and a change of set down a fifth is negative (sad, dark,
despairing). The adjective may vary with the individual listener,
but the direction will remain the same for all listeners.

Up to a certain point, the greater the number of fifths between
sets the greater the emotional effect, however, beyond that point
the Jaw of diminishing returns sets in, and only increasing ambigu-
ity results. .

Similarly, up to a certain point the greater the ambiguity the
more negative (sadder, darker) and the less the ambiguity the
more positive, (brighter, happier) the music will be. This state-
ment may apply not only to relationships between consecutive
roots of diatonic sets, but also to relationships between roots of
chords and relationships between single tones of a melody.

Thus a possible explanation for the emotional effect of the
change of set from major to the parallel minor may be that the
cardinal center drops three fifths while the ordinal center remains
the same. Furthermore, an explanation of the emotional effect of
the change from minor to the relative major may be that the ordi-
nal center and the cardinal center become the same, thus diminish-
ing the degree of ambiguity. ‘

The validity of these conjectures can easily be tested empirically
by the interested listener by watching the graph of the piece while
listening to it.
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Summary

1. Modulation is the change from one single-rooted diatonic
set to another. Higher order modulations between higher order sets
may also exist in music. '

2. Chromatic modulation is that which takes place between two
keys which are not functionally related to each other as are the
triads in a key,

3. Different modulations have different emotional effects.
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Chapter Ten

Pitch And Meter

METER, LIKE pitch, is number mixed with time. That is, meter is
repetition, or repetition of repetitions (etc.), the smallest element
of which is one particular interval of time, marked off, or limited, by
two points in time. The smallest possible metrical repetition consists
of two of these time intervals, marked off by three beats, or points
in time. All meter, like all pitches, can be expressed in terms of
numbers.

Pitch and meter appear to be different phenomena to us because
of the different way in which we perceive them; the faster periodic-
ities of pitch are perceived as tones, while the slower periodicities
are perceived as meters.

There are also some objective differences between pitch and
meter; material periodicities are discrete, while pitch periodicities
are formed by continuous pressure changes. Metrical “tones”, that
is, frequencies per second, have no overtones; they are not com-
pounds of partial frequencies as are pitches. However, they have
the analogue of undertones due to the process of factorization in
human perception of meters. We tend, for instance, to hear four
beats as two groups of two beats. In perception of meters, we are
consciously aware of the individual pulses which make up the
metrical tone, while this is not the case in the perception of
pitches, which we hear consclously as continuous phenomena.

Two distinct problems arise in the discussion of meter as they
did in the discussion of pitch: the problem of determining what the
meter is in a given composition, and the problem of the properties
of the metrical relationships once we have decided what they are.

Meter is made manifest in music by the patterns of accents.
There are many factors which contribute to the determination of
the position of the relative accents in music, among which is the
notation of the music: the position of the bar-lines with respect to
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the notes. This is of course the most superficial of all the factors. It
is possible, however, to notate music incorrectly; it is in fact a wide-
spread practice as a means of attaining the illusion of complexity
by means of obscurity. It can be found as early as Schumann and
Brahms, as well as increasingly often in later works. There are
some compositions which have had to be entirely rescored to facil-
itate performance. The way to notate meter incorrectly is to place
the bar-lines in such a way that they are unrelated to the periodic
accents, or to change the notation of the meter constantly, while
the beats and groups of beats continue undisturbed under the fancy
notation.

Today the connection between bar-line and accent in music is
strongly disputed, because of the fact that much contemporary
music, like prose, has no regular groupings of beats, although the

- bar-line remains as a necessity for the performance of the music in
concert.

Although many people assert that the only function of the bar-
line is to keep the players together, still there exists a great mass of
music in which the periodicities represented by the bar-lines are
very real, and an essential part of the music. Harmonic change
over the bar-line is an important element which contributes to this
larger metrical periodicity. Treatment of dissonance is another, for
if dissonance is more carefully treated on the first beat after the
bar-line than on any of the other beats, this will tend to set up a
metrical pattern.

The establishment of meter is a cumulative process, for while
pitch relationships help to establish it, so also does an established
meter itself influence, by selection, the pitch relationships them-
selves, by means of the emphasis it places upon tones.

There are other, more obvious forms of accentuation in music,
some of which are duration of a tone, voluntary accentuation by
touch or loudness, position of a tone at the peak of a melody,
repetition of melodic patterns, etc.

One important element which is usually ignored in discussions
of meter, comes from the performer or the perceiver. I shall there-
fore call it subjective meter, not, however, implying by this term
that it is arbitrary, illusory, or unreal, only that it has its source in
the person rather than on the printed page.

- Subjective meter results from a built-in tendency of most people
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to accept periodicity for the sake of economy in order to eliminate
unnecessary effort. Walking, for instance is normally periodic, how
wasteful of energy it would be if it were not! And how difficult to

_get anywhere! We have a natural tendency toward consistency which
could even be called habit.

This tendency to make things regular exists in varying degrees in
various people; one can consciously resist it if one wants to, but it is
impossible entirely to eliminate it, for it lies at the center of life, in
the heart-beat. Even the voices of silence speak in periodicities if
they speak to a living person.

Today much of our theory about meter, as it is about pitch, is
derived from ‘contemporary music and poetry, which often has no
objective metrical periodicities. We mistake the violation of the
norm for the norm itself, and finally come to the conclusion that
meter, if it exists at all is entirely subjective, and that the only
function of the bar-line in music is to enable the performers to
keep together.

It is the privilege of the artist in his ‘art to break any rules he
wishes, to violate any norm as he sees fit. He must have absolute
freedom to create, just as his audience should have absolute freedom
to praise or to castigate. The artist’s intuition may be far ahead of the
theorist’s intellect. But the freedom of the artist does not extend to
the theorist. For -anyone, either artist or theorist, to deny the exis-
tence of a norm in other art than his own, to obliterate the idea, to
remove a meaningful word from the language, is to impoverish the
world.

The properties of metrical relationships will now be mvesugated
apart from the dxﬂiculty of their establishment. There is no doubt
that they do exist in some music; this is sufficient reason to discuss
them.

Since meters, like pitches, can be represented by equally spaced
points in time we see that much of what has been said about pitch
applies directly to meter. The following pictures represent metrical
units equally as well as they represent pitch units:

. . . . . . . . . .

meter: duple triple '~ 2against 3
pitch: octave twelfth fifth
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Numerical Consonance No. of

Meter Picture Representation I I Roots
- 2/4 ves 1:2 1 2 1
3/4 cees 1:3 1 3 1
4/4 ..., ‘ 1:22:4 1 4 1
5/4 ... 1:5 1 5 1
M4 . . 17 17 1
6/8 e 1:3:6 1 6 1
98 ... 1:3:9 1 9 2
12/8 ....... e 1:2:4:12 1 12 1

Figure 19. Pictorial Representation of Meters as Points in Time

Figure 19 gives the pictorial representation of all the familiar
meters. It also gives the pitches represented by the same patterns,
as well as their roots-and consonance- values. _

We can speak of ‘the metrical analogue of consonance, root,
chord, non-harmonic tone (the temporary syncope is the counter-
part of the non-harmonic tone), and function. We shall see that
similar principles apply to chord construction and metrical
construction.

The metrical “tone” is a given metncal penod1c1ty Thus a metri-
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cal “chord” is a simultaneous set of periodicities, each of which
corresponds to a single metrical “tone”. Metrical chords can be
expressed by sets of integers. The integral representations of the
metrical chords are given in Figure 19. These representations differ
from the meter signature, for in the latter the unit is represented by
Y4 rather than by 1.

Consider a four-measure phrase in 4/4 meter, each beat of
which is subdivided into four sixteenth-notes. Figure 21 shows the
metrical chord, whose numerical representation is 1:2:4:8:16:
32:64.

N T 6 . 2.6 o e o o e s s s o o
. . . .
.

ssnes
.
.
.

Figure 20. Pictorial Representation of the Metrical Organization of
the Four-Measure Phrase -

There are seven tones in this chord, all of which are separated by
the interval of an octave, Thus the metrical sonority is six octaves,
and it possesses the extremely strong reinforcement of the funda-
mental which such a sonority possesses. '

If the phrase is in triple meter its numerical representation is
1:2:4:12:24:48:96. Its sonority is that of an open twelfth, with
octaves both above and below the twelfth. If it contains 3 against 2
at any metrical level, it contains the interval of a fifth.

Any further duple compounding of metrical units has the result
of adding lower octave reinforcement. Any further duple division of
metrical units has the result of adding higher octave reinforcement.

The great mass of music, from the fifteenth to the late nine-
teenth centuries, the meter of which is compounded of duple and
triple units, achieves a metrical sonority which is no more dis-
sonant than the principal sonority of the middle ages: the open
triad, that is, the interval of a fifth, with or without octave
reinforcement. '

The numerical consonance measures defined for sets of tones,
apply equally to sets of metrical tones, as does the numerical
definition of root. The absence of any repeated metrical units is the
metrical equivalent of noise, as opposed to musical tone. Our
tolerance of metrical dissonance is far less than it is of pitch dis-
sonance, as is shown by the great prevalence of duple and triple
metrical units over quintuple or septuple ones.
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In metrical chords, as in pitch chords, the root is the lowest
power of two which is present. There is a difference, however, for
no metrical chord can exist without the presence of 29, or 1, for
the presence of the meter itself implies a periodicity of 1. There is
another important difference between metrical and pitch chords
which results from the different degree of accuracy with which
we perceive pitch and meter. This difference concerns the oc-
tave. We can speak of octave doubling in pitch relationships, for
the two tones are so closely related as to appear to be almost
mdlstmgulshable, and because the set of partials of the upper tone
is completely contained in the set of partials of the lower tone. But
there is no possibility of our failing to distinguish between metrical
octaves, Furthermore, there are no metrical overtones, but only
undertones. Due to the fact that meter takes place in the range of
our conscious perception of unit time intervals, while pitch does
not, differences between metrical tones are far more striking than
are differences between pitch tones. We would never mistake a half
note for a whole note. Thus, metrically speaking, an octave confers
a root, while tonally speaking it does not necessarily do so.

From Figure 19 we see that of the meters given, only septuple
and quintuple meters have no roots other than 2°. We also see that
their metrical sonority is minimal. These facts no doubt account
for the rarity of occurrence of these meters in music before the
twentieth century.

We can speak also of metrical function, analogous to pitch func-
tion. A given metrical tone has a particular function relative to the
root of the single-rooted metrical set to which it belongs. Since we
can distinguish not only between the metrical tones, but also be-
tween single pulses of those tones, we shall ascribe to each particu-
lar position, or pulse, in a metrical structure a particular function
according to the quantity of metrical tones, or functions, to which
it belongs. For example, in the four-measure phrase of 4/4 meter
of Figure 20, the metrical function of the first beat of the first
measure is 7, for it belongs to seven different metrical tones or
functions of the single-rooted metrical set. Suppose that the first
beat is divided into sixteenth-notes. Then the metrical function of
the second sixteenth-note is 1, for it occurs in only one of the
metrical tones. That of the third sixteenth-note is 2, for it occurs in
two of the metrical tones. Thus to each position of this metrical
hierarchy there corresponds a metrical function (which is a func-
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tion of functions) which contributes to the total function of the
tone which appears in that position.
A possible principle for the construction of good pitch or meter-
ical chords is the following: skip no prime partials. That is, make
sure that a power of each prime partial smaller than the highest
one which appears is present. Quintuple meter (1:5) is the only
- occurrence of a metrical violation of this principle in the literature
until the twentieth century, and its occurrence is rare. The major
third, 4:5 occurs, it is true, as a perfectly good pitch interval in
violation of this principle, but that may be due to the fact that
pitches have overtones, and the missing prime partials are supplied
by them, while metrical tones have no overtones to supply the
missing partials. ,
There may be in music an overlapping area of metrical periodic-
ities and pitch periodicities, if the smallest metrical periodicities
are fast as twenty beats per second, which is the approximate
periodicity of the lowest pitch on the keyboard. The fastest mark-

~ing on a metronome is 208 beats per minute, which is 208/60, or
3.46 beats per second. That unit can easily be divided mentally
into two metric units, and the writer can with some difficulty divide
it into four metrical units mentally. Suppose that 4 times 3.5, or

14, were the metrical perception threshold. Twenty cycles per
second is a rough estimate of the pitch perception threshold. In the
area of between 14 and 20 beats per second we perceive the peri-
odicities as a vague rumble, neither pitch nor meter.

Can we conjecture from this fact that there may exist some
principle by which the tempo of a composition is ideally deter-
mined by the pitches which compose it? It seems to the writer to
be the case, for if we choose to maintain a continuity of successive
division of temporal units, then within a certain range the pitches
themselves would determine the tempo. This substantiates the in-
tuition of musicians who feel a certain tempo to be innately im-
plied by a given composition.

The greater the quantity of intermeshing commiensurable peri-
odicities, whether metrical or tonal, the greater the periodic com-
plexity of a composition. Let complexity be defined as follows:
The greater the quantity of groups within groups, the higher the
degree of complexity. The familiar ballad meter, 4/4 has often
been considered the simplest of all meters. I submit that, on the
contrary, it is\becausc of its complexity, or high degree of order
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(negentropy as the information theorists call it) that 1t is so often
used, and thus familiar.

Often “complexity” is used in another sense, to describe the
condition when the various factors contributing to the determina-
tion of the meter conflict. This is a subjective definition of com-
plexity, which depends upon the ease of discovery of the periodici~
ties rather than upon the relationships between the periodicities. It
is the result of confusing the process of analysis, with the music
which is being analysed. Often, because it is difficult to discover
the underlying meters of a composition, people humbly assume
that the meter is complex. Similarly, if the meter is clear and
evident, it is regarded as s1mple because its discovery is so easy.
This is like the confusion, in the realm of ideas, of obscunty with
profundity.

Real complexity of meter or pitch relationships cannot occur
unless a periodicity is clearly established on one level. There can
be no groups within groups if there are no groups. The establish-
ment of this built-in reference level is the purpose of roots in
music, whether they be tonal or metrical.

.. Summary

1. Meter is number mixed with time,

2. Meter and pitch are similar in that they are both temporal
phenomena which can be spatially represented by equally spaced
points on a line.

3. The problem of determining what the meter is in a given
piece must be distinguished from the problem of determining the
properties of metrical relationships.

4. Pitch relationships influence meter, and an established meter
in turn influences pitch relationships.

5. One element of meter is subjective, but real.

6. Our tolerance of metrical dissonance is far less than it is of
tonal dissonance.

7. In a single-rooted metrical chord, each metrical position has a
function whose value depends upon the quantity of metrical tones
to which it belongs.

8. Tonal and metrical complexity are defined as varying directly
with the quantity of groups within groups, or levels of hierarchical
structure, which are present in a composition.
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Chapter Eleven
Tonality

IT Is now possible to suggest a definition for “tonality”: Music is
tonal if the majority of its adjacent tones, whether simultaneous
or consecutive, form single-rooted sets. Tonal music thus possesses
one or more perceptible common measures, or roots, among its
tones. Some music is tonal and some music is not tonal. Some music
is more tonal than other music. The measure of tonality is the follow-
ing: The greater the quantity of simultaneous common measures, or
roots, to which the tones of a composition are related, the higher
the degree of tonality. Thus the metrical hierarchies, as well as the
tonal hierarchies, contribute to the tonality of a composition.

A theoretical distinction has been drawn here. There exists
music which is minimally tonal according to this definition, but
which may not be heard as such, due to the too frequent change of
root or to the absence of two or more simultaneous common mea-
sures. Whether such music will be heard as being tonal may de-
pend to some extent on the listener. But the increase in tonality as
described above will be heard by all listeners, despite the fact that
the border line may vary from listener to listener.

The greater the quantity of different pitches of the composmon
which possess 2 single common measure, the more tonal is the
music. It is only by means of hierarchical ordermg of the pitches
that this ratio can be increased from 7:1 to 12:1, since the seven-
tone set is single-rooted, and the twelve-tone set is not. Music
which uses keys as well as single-rooted chords will be more tonal
than music which uses single-rooted chords only, for it is by means
of the key, and combinations of keys, that the higher-order single-
rooted set which includes all the twelve tones can be constructed.

Bach’s music is tonal; Schoenberg’s atonal music is atonal. They

-are not similar; on the contrary, they are quahtatlvely different.

Just as there are varieties of tonal music, so, on the other side of

the border, there are varieties of atonal music. There is atonal
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music which has no common measure conceptually, and atonal
music which has no common measure perceptually. Consider music
which uses the tones of the twelve-tone equal-tempered set, but
which does not group the tones into either single-rooted chords
or diatonic keys. The intervals of such music will be principally
seconds and sevenths. Since these are the intervals for which no
clear paradigm intervals exist conceptually (see Chapter I), the
ear has no prototype to which to correct them, and they remain in
their pristine irrational state. Altogether apart from any considera-
tion of human perception thresholds, this music has no conceptual
common measure. The irrational is that which has no common
measure.

The unifying factor in such music, if it exists, must be an arbi-
trary compound of tones, for example, the tone-row. Such music is
ordered in a qualitatively different fashion than are the partials of
a single tone. It is thus a formalism whose structure is inconsistent
with the nature of its elements.

If the music were constructed of the tones of the Pythagorean
twelve-tone scale instead of the equal-tempered twelve-tone scale,
then, it is true that theoretically it would have a common measure,
for the Pythagorean scale can be represented by a set of natural
numbers, of which 1 is the common measure. But if each tone of
the Pythagorean twelve-tone scale is expressed as an integer, then
the smallest of these integers is 217, or 131072, an upper partial
so remote that surely no one would maintain that it could be heard
as related to 1, its fundamental. For the root-strength  dimin-
ishes as the power of 2 increases, whether or not the scale of di-
minution suggested on page 32, Chapter III, is accepted. The
perceptibly rootless augmented fourth has a root strength of 25, 217
is a very much greater number than 25, ‘

If the music were constructed from the tones of the just twelve-
tone scale derived on page 46, Chapter V, which is the least arbi-
trary just twelve-tone set in existence, then, if each tone of this set
is expressed as an integer, the smallest integer is 219, or 1024, The
same argument which applies to the Pythagorean twelve-tone scale
applies to this scale.

If the tones of a Pythagorean scale are expressed as integers and
thus equated to partials of an overtone series, there is a gap of
seventeen octaves between the tone which is closest to the funda-
mental, or common measure, and that fundamental. In the case of
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the just twelve-tone scale mentioned above, the gap is ten octaves.
These gaps render the common measure imperceptible. The only
way to close these gaps, these discontinuities, and still be able to
include all the twelve tones, is by hierarchical grouping of the
tones into single-rooted subsets whose roots in turn can be grouped
into single-rooted subsets, etc. (Might these single-rooted subsets,
these gestalts, be analogous to the discrete quanta, which, in the
present physical view, constitute matter?)

According to the definition of “tonality” suggested herein, all
Western music until that of the late nineteenth and twentieth cen-
turies is tonal. For the single-rooted diatonic set, or the single-
rooted pentatonic set is the basis of all Western music (and of most
Eastern music too, for that matter). What has often been called
modal music is a species of tonal musxc, for the modes are variants
of the diatonic set.

In the period of what is usua]ly called tonal music single-rooted
chords, single-rooted keys, and metrical hierarchies were present
simultaneously. But even before this high development came into
existence, the hierarchy of the diatonic set was ubiquitous It was
assumed without question; so deeply embedded was it in the un-
conscious that it never rose to consciousness, and thus it could be
gradually abandoned without people’s realizing what was happen-
ing. From the middle of the nineteenth century the metrical and
tonal hierarchies (two aspects of the same thing) which had pre-
viously reinforced each other began to be set against each other.
We see this in Brahms’ counter-rhythms and melodic, chordal, and
key suspensions and overlaps, in the altered harmonies of the
Romantics, the roots of which harmonies could be grouped into
keys, but the tones of which increasingly often departed from the
keys. The four-measure phrase, together with the metrical units
represented by the bar-lines, gradually disappeared, and the chord
took precedence over the key. The very ideas of bar-line and key
began to get lost. Witness the assertions of the tyranny of major
and minor, and the tyranny of the bar-line. The bass took prece-
dence over the root, and, similarly, the idea of root itself got lost,
and only the ideas of sonority and consonance remained. Con-
sonance then, when it was not entirely cast out in favor of dis-

- sonance, together with sonority variation, became the basis of much
harmonic technique. Some composers kept it constant; some varied
it in an orderly continuous fashion.
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Neither of these practices results by itself in tonality, as defined
herein. Something more is necessary, and that somethmg more is
the root, or common measure.

Summary

1. Music is tonal if, and only if, the majority of its adjacent
tones, whether s1multaneous or consecutive, form single-rooted
sets.

2. The greater the quantity of simultaneous common measures to
which the tones of a composition are related, the more tonal is the
composition.

3. Only by means of hierarchical structure can the ratio of
different pitches to a single common measure be increased from
7:1t0 12:1.

4. Equal-tempered, dissonant, non-diatonic music is irrational.

- 5. All Western music which preceded the 1mpressmmst1c devel-
opment in France was tonal. A large portlon of twentieth century
music is atonal.
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Chapter Twelve

Aesthetics

s

IT 1s the purpose of this final chapter to demonstrate that, if we
accept certain interrelated aesthetic axioms, then tonal music is
‘absolutely better, relative to those axioms, than atonal music. The
axioms are the following:

1. Unity is good.

2. Variety is good.

3. Order is good.

4. Consistency is good.

5. Expressive symbolism is good.

6. Continuity is good.

I will attempt to show that tonal music has potentially more of
all of these properties than has atonal music.

Greater unity is possible in a tonal composition than in an
atonal one, for all the means of achieving unity available to atonal
music are also available to tonal music, while there is one unifying
factor in tonal music which is not available to atonal music.

This is the perceptible common measure. v

Why is it good to have a common measure? The New York
housewives did not ask that question when it was discovered that
the city butchers had altered their scales to obliterate the common
measure, for the answer was too obvious. The answer is also im-
plicit in that rich source of insight, the language, for the absence of
‘a common measure is the literal, precise, mathematical meaning of
“irrational”, ’ .

Contemporary physicists and philosophers have pointed out that
we cannot be certain that our measuring rods do not change as
their spatial and temporal coordinates change. But no one suggests
that for that reason we should change our measuring rods during
the course of an experiment. If we did we could no longer contact

‘the objective world. “Music is counting performed by the mind
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without knowing it is counting,” says Leibnitz. Perception of
hght as well as of sound, is a form of unconscious counting of the
impinging periodicities. Counting is only possible by means of a
common measure.

The rejection of a common measure of equally spaced points in
time, each of which differentiates the past from the future by as-
serting the present, is symbolic of the rejection of a common mea-
sure of objective time, which can be shared by more than one
person, thus rendering its passing more inescapable. Periodicity
stands for circumstances over which we have no control, like those
boundary conditions of life: the passing of time, the existence of
an uncaring world outside of us, and the certainty of death. To
reject periodicity gives the illusion of freedom from the outer
world by making it appear to be illusory.

The concept of unity which is achieved by means of the com-
mon measure is similar to Heinrich Schenker’s idea of tonal un-
folding.2 The tone which is unfolded is the tone whose frequency
is the greatest common measure of the music which unfolds it.
This tone is unfolded into other tones, which are again unfolded
into other tones, and so forth. The only way to unfold a tone so
that it will be heard as such is to unfold it into single-rooted sets
which have the tone as root. Tonal music in which the hierarchy is
developed to the extent of the presence of chords, keys, and higher-
order keys does this. The single tone, or common measure, which
is unfolded, is the unity which is present in many compositions, all
of which appear to be entirely different from one another. It is the
invariant, the essence, the common property, the quidditas, of
which the composition itself is the variant, the existence, the di-
versity, the haecceitas.
~ Greater diversity is possible in tonal music than in atonal music.
The bargain which the composers of the late nineteenth and twen-
tieth centuries made when they exchanged the single-rootedness of
the seven-tone set for the five additional chromatic tones was pos-
sibly the worst bargain in history, if its aim was the increase of
available tonal material. For tones come into full existence only in
relation to other tones. The addition of the five chromatic tones to
the seven diatonic tones eliminates the functions of the tones, and

1 Leibnitz, in a letter to Goldbach. Leibnitii Epistolae, ep. 154.
2 Schenker, Heinrich, Harmony, Chicago University Press, Chicago, 1954.
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it is by virtue of the multiplicity of its functions that a particular
tone assumes a character. In a diatonic system of keys, chords,
higher-order keys, and metrical compounds, a single tone can take
on a very large, possibly infinite, set of identities, according to the
particular combination of functions it possesses, while in a root-
less, non-metric systemthe single tone is always and only a fre-
quency, barely, if atall, distinguishable in character from its
neighbouring tones. For a tone acquires its function from its con-
text. In dissonant rootless music, the heard context itself is obliter-
ated, for each new tone destroys the memory of the previous tones.
Without a root or tonic as a reference tone, the mind cannot
(consciously or unconsciously) relate all the incoming tones to
each-other, so each tone stands alone and acquires no function.

A tone takes on its identity according to the set of functional
identities it possesses. A tone takes on its function according to its
hierarchical position relative to the roots of the single-rooted sets
of which it is a member. It also takes on its identity according to
its metrical function, which, as we have seen in Chapter X, de-
pends upon the presence of single-rooted metrical chords. The
functional identity of a tone, therefore, is determined by the metrical
organization of the composition as well as by its pitch organization.

To give an example, I shall calculate the possible functional
identities ‘available to a single tone in the Agnus Dei of Bach’s
Mass in B Minor; the graph is shown on page 60 in Chapter VIIL
In this composition the four-measure phrase is established, as is
the single-rooted chord, the diatonic key, the second-order key,
and the third-order key.

A single tone assumes its tonal function by virtue of its relative
frequency, and its metrical function by virtue of its position as a
pulse in one or more particular metrical tones. The possible pitch
functions multiplied by the possible metrical functions (since in
this case the two are independent) gives the total possible func-
tions of a single tone. The total possibilities are 3 (functions of a
single-rooted chord) times 7 (functions of a key) times 6 -(func-
tions of a second-order key) times 6, (functions of a third-order
key). Since the four-measure phrase of 4/4 meter is established,
whose fastest tone is the sixteenth-note, we have a metrical single-
rooted chord of seven tones each separated by the interval of an
octave. Thus, in this composition, a tone can possess one of seven
metrical functions according to which of the metrical octaves it
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belongs. In order to find the total possible combinations of func-
tions which a single tone can assume according to context, we
multiply all these possibilities together: 3 times 7 times 6 times 6
times 7, which equals 5292. (The actual number is somewhat less
than this, for the functions are not entirely mutually independent,
but it is of a similar order of magnitude.)

There is no limit to the quantity of possible tonal and metrical
compounds due to the fact that, by means of enharmonic equiva-
lence, the twelve-tone equal-tempered set is the set of all possible
diatonic sets. | v '

In atonal music with fluctuating meter a given pitch takes on no
functions. :

Thus, the addition of five tones to the seven-tone set, as well as
the dissolution of the metrical compounds, actually achieved a
great impoverishment of the composer’s material rather than the
enrichment which it was intended to achieve. By this Faustian
bargain the composer gained absolute freedom of choice, but was
left with little to choose from. '

A greater degree of order is possible in a tonal composition than
in an atonal one. A new semantical difficulty enters if we wish to
compare tonal and atonal music with respect to the order attain-
able in each, for “order”, like “tonality” is a word which has been
misused and redefined to such an extent that there are people who
divest it of all meaning other than an arbitrary serial occurrence in
time. The similar situation of these two words in our culture is not
surprising, for their meaning is very similar, tonality being the
tonal manifestation of the abstract idea of order.

By “order” is meant here hierarchical structure, architectonics,
the essence of which is groups combined within groups, which are
again combined within groups according to a similar principle, and
so0 on. An ordered structure in this sense is the exact opposite of a
random structure, or the “heat death” as the physicists call it.

Tonal music can be more highly ordered than can atonal music,
for however high the degree of order an atonal composition may
have, a tonal one can have more. For the potential order of a
tonal composition extends down into the microscopic level of the
structure of the single tone itself, while this is not true of any
hierarchical order which may be present in atonal music. A mea-
sure of the degree of order is the quantity of groups within groups
which occur in the set under consideration. However high this
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number may be in atonal music, it can always be higher in tonal
music, for in tonal music the group of partials present in a single
tone is a part of the order of the whole, while in atonal music it is
not.

A tonal composition can be more consistent than can an atonal
composmon The principle of suggesting a fundamental by the use
of its lower partials is the principle behind the construction of single-
rooted sets, whether they be chords or keys. Chords are con-
structed by the use of tones related to each other as are the partials
themselves; keys are constructed by the use of the intervals be-
tween the lower partials. So also are higher-order keys constructed
by the use of these intervals, as well as by analogy with the rela-
tionship of the chords within a key to the tonic of the key.

Tonal music, then, is internally consistent. But it is more than
this, for it is also consistent with the inner nature of its elements;
the single tones. The principle of ordering of the tones by the
composer is the same as the ordering of the partials into a single
tone. The subjective element, or that which is contributed by the
composer, follows the same prmmple as the objective element, the
.structure of the tone.

.. 'The electronic composers, in order to do away with this incon-
sistency, have considered the alteration of the single tone by
stripping it of its partials. This can be done electronically. But
nothing, short of an alteration of the human physiology, can do
away with human experience of the overtone series, for it exists
in the tones of the human voice, as well as in the tones produced
by musical instruments.

-Should the ultimate attempt in the avoidance of repetition be
made; that is, the alteration of the periodic nature of the single
pure sine-wave, then the tone itself would vanish, for a tone is
distinguishable from noise only by its being a periodic phenome-
non. If “music” were to be composed whose basic element were
noise, the argument for consistency in this chapter would no longer
be valid. But would such “music” any longer be music?

In a recent article in the Journal of Music Theory, a new con-
cept of tonality was proposed. Tonal music was defined as music
which

. unfolds through time a particular tone, interval, or chord.?

8 Travis, Roy, Toward a New. Concept of "Tonality, Journal of Music
Theory, Yale School of Music, Vol. III, No 2., November 1959, p. 261.
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If the set were single-rooted, then the definition would agree
with the one suggested in Chapter XI, and the music described by
it would stem from the single tone. But if the set were not single-
rooted, then the idea is meaningful, but the music it describes
would not be as consistent as tonal music as defined herein, for it
would not be consistent with the nature of its elements, the single
tones.

Music whose hierarchical ordering extends to meter as well as to
pitch has an even deeper consistency than tonal non-metrical
music, for its consistency extends from the microcosm to the
macrocosm. The same principle of set formation appears from
the bird’s-eye view as from the worm’s-eye view. Until recently the
physical world was supposed to have this property, for the electron
circling around its nucleus was the analogue of the planet circling
around its sun. Is there possibly an analogy between atonal music
and some contemporary physics?

It is possible to speak of ordinal consistency in tonal music as
well as cardinal consistency. Ordinal consistency concerns consis-
tency of direction between tones occurring consecutively in time.
Single tones as well as roots and tonics can move up or down by
fifths. Thus we can have parallel or contrary motion between these
units of differing generality.

In tonal music all the possibilities of expressive symbolism can
occur which can occur in atonal music; in addition, there are some
possibilities available to tonal music which are not available to
atonal music. The expressive symbolism of change of mode and
key, either harmonically or melodically or both, is not possible in
music which has no modes or keys. The expressive symbolism of the
non-harmonic tone is not possible in atonal music.

In tonal music the expressive symbolism of direction up or
down between tones, roots of chords, roots of keys, or roots of
higher order keys is available to the composer, while the only
direction possible in atonal music is that between the tones them-
selves. Since there are more ways to establish direction in tonal
music, there are also more ways to. establish conflict of direction,
whether it be between two melodic lines, between roots and
melodic lines, between root progression and key progression, etc.
In atonal music the conflict can be established only between tones
(dissonance) or between melodic lines. All dissonance used in atonal
music is available to tonal music, where its symbolic effect is made
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even stronger by contrast with consonant passages. But if dissonance

is the norm, its expressive possibilities are diminished, for conflict

itself has only a relative merit; it is expressive only in relation to
 the possibility of absence of conflict.

In tonal music the expressive symbolism of ambiguity and clar-
ity is possible, not only between tones, but between roots and
tonics as well. Furthermore, the symbolic ambiguity of an atonal
passage imbedded in tonality is possible.

‘Another rich source of expressive symbolism in tonal music lies
in the relation of a theme or motive to its harmonic environment.
A theme may occur in tonal music in one position relative to the
key of the music, and later the same theme may occur again ina
different position relative to the key in which it is appearing. An
example of this is to be found in the first movement of Schubert’s
B-flat Sonata, Opus Posthumous, D. 920, where the theme occurs
first on the tonic of the key of B-flat major, and later on the third
scale-step of the key of G-flat major.

With the gradual downfall of tonality we observe a great in-
crease of extraneous means of expression, that is, expression
which arises from some other source than the relationships be-
tween the tones themselves. The importance of the virtuoso per-
former increased to the point where concerts were, and are, adver-
tised, not by composer, but by performer. Articulation and phrasing,
special instrumental effects, even to the extent of out-and-out sound
effects (as in musique concréte), have become increasingly impor-
tant, possibly in order to fill the expressive vacuum left by the
disappearance of tonality. :

It is a prevalent idea today that all symbolic expression in music
stems from the violation of a norm.

- . . the frustration of expectation has been found to be the basis of
the affective and the intellectual response to music.

In Chapter IX a source of expression is described which is not the
violation of a norm, but which is the result of the built-in expres-
sive symbolism of a tone which has a functional identity due to its
hierarchical context.

But suppose we grant that it is expressive to violate a norm.
Undoubtedly it has a certain surprise shock value. Then we can

4 Meyer Leonard B., Emotion and Meaning in Music, University of Chicago
Press, Chicago, 1956, p. 43,
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distinguish between music which is expressively self-sufficient and
music which is not. The former kind, if it violates a norm, violates
a norm which is built into the music. For example, in a tonal
composition a non-harmonic tone is a violation of a norm at a deep
level; an exceptionally distant modulation or an exceptlonally dis-
sonant chord, or an unusual harmonic progression, is a violation
of norms which are established by the composition itself.

Music which is not expressively self-sufficient violates cultural
norms, rather than norms set up by the music itself. It thus de-
pends upon the education of the listener whether or not he will
“get” the expression of the music. Music whose sole source of
expression is this sort of violation of a cultural norm is music for
the elite. Only those who are educated to its opposite (that is,
music embodying the norms which it violates), will be able to
appreciate it. It is thus contra-educational music. This is not true
of tonal music, the appreciation of which is increased, not dimin-
ished, by knowledge about it.

Music which depends for its expression upon the violation of
cultural norms or expectations is parasitic, and, like all parasites,
destroys its host and thus itself. For if all music depended for its
value on the violation of the cultural norm, then in time there
would no longer be any cultural norm to vxolate, and thus no
violation would be posslble

Greater continuity is possible in tonal music than in atonal
music, for all the means of maintaining continuity in atonal music
are available to tonal music; but the opposite is not the case, for
tonal music can establish continuity by means of the presence of a
common measure. The successive pitches of atonal music are not -
time-binding, they obliterate each other in the memory of the lis-
tener, for they are incommensurate with each other, and there is
no common reference tone to which the ear can associate them.
Each successive tone destroys the memory of the previous one.
Atonal music must rely on more obvious forms of continuity:
Wagnerian continous flow, or cyclic form, the apotheosis of which
is the serial composition, whether it be of the tone-row variety or
the later and more highly serialized compositions of the electronic
composers. (For all their emphasis on series, they ignore the most
important one, the overtone series.)

Tonal music, on the other hand, can risk sectional breaks, and
can permit the enormous thematic variety found, for example, in
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Mozart, for it has the presence of one or more common measures
to hold it together. If it is composed principally of single-rooted
chords within keys within higher-order keys, then it is possible
momentarily to dissolve one of these common measures and rely
on another. Thus the temporary use, in a tonal context, of dis-
sonant rootless chords need not destroy the continuity, for it can
be maintained by the common measure presented by the key. Simi-
larly, the temporary use of sets of tones which do not form keys
need not destroy the continuity, if the higher-order key is present
to provide the common measure.

The failure of the superficial continuity of atonal music is evi-
denced by the paradox that it is often atonal music which seems
lacking in cohesion, and which never seems to get anywhere, while
the music of Bach, Mozart and Beethoven, which is full of bar-
lines, gaps, four-measure phrases, repetitions, divisions, and great
climactic cadences, travels continously and appears to transcend
ordinary time.

We live in an age when the emphasis in every field is on dynam-
ics, Heraclitean flux, rapid change; where the whole, the gestalt, is
asserted and its parts are often ignored. In linguistic analysis the
sentence, not the word, is regarded as being the basic unit of
language. Some schools of philosophy maintain that a word has no
meaning out of context. In musical analysis the phrase is often
regarded as the basic unit instead of the single tone. Some mathe-
maticians consider the axiom, rather than the word, to be the
elementary unit of meaning, :

It is true that the tone takes on its meaning, or function, from
the whole, and that each added tone of the whole may alter the
relationships between all the other tones, and thus the function of
each single tone itself. But without the existence of the relatively
static reference tone, the other tones take on no function. Without
the static point which bifurcates the time continuum there can be
no.tone at all, and hence no music.

Similarly, without accepting the present moment of the observ-
er’s identity, there can be no aesthetic comparison between styles,
for the very existence of the formulation of a style is itself depend-
ent upon the prior existence of a judge who judged, independently
of stylistic considerations, a particular set of tones to be music.
The absence of these static points which bifurcate the time con-
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tinuum sets up an infinite regress in both music and the theory of
music.

The static and the dynamic, harmony and melody, permanence
and change, part and whole, are symbiotic ideas, which, like the
binary stars, depend upon each other for their very existence. To
destroy one is to destroy both. While it may be true that the line is
greater than the sum of its points, it is nevertheless also true that
there is no line without points.

Summary

1. Tonal music can be more unified than atonal music because
of the presence of one or more common measures among its tones.

2. Tonal music can be more various than atonal music because
the functional combinations and permutations available to the sin-
gle tone are greater.

3. Tonal music can be more complexly ordered than can atonal
music because the quantity of levels of hierarchical order can be
greater.

4. Tonal music can be more consistent than atonal music be-
cause tonal music is a formalism the whole of which is patterned
after the nature of its elements, and in which, therefore, the order-
ing of the macrocosm reflects the ordering of the microcosm.
5. Tonal music can be more expressive than can atonal music

because tonal music can draw upon the expressive variety of its
greater quantity of functional complexes, and' thus it need not
resort to the violation of cultural norms for its expression.

6. Tonal music can have greater continuity than can atonal
music, because the continuity in tonal music is maintained at the
deepest level by the presence of one or more common measures
between the pitches, rather than by the relatively superficial meth-
ods of continuous flow, cyclic form, or serial order.
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Appendix A
Glossary

THE FIRST definition for each of the following words comes from
Webster’s Dictionary. The second is my attempt to give a clearer
subjective, and in some cases, objective, meaning to the word. The
objective definition, where it appears, is not strictly speaking a defi-
nition at all, but is rather a description of the physical state of
affairs which I believe to be the cause of the psychologlcal phe-
nomena indicated by the word.
avg

CHORD :
I. Agreement of musical sounds; accord, harmony. . . . A
combination of tones which blend harmoniously when sounded to-
gether, because the pitch frequencles are in the ratios of small
whole numbers.

IL. A set of tones, which when sounded together, appear to
constitute a model for, or variant of, the overtone series. A chord
is thus a set of tones with a single perceptibly predominant. root,
corresponding to the fundamental of the overtone series. The ratio
of the root strength to the consonance must be large enough that
the compound wave pattern can be perceived as an entity. See
Chapter III.

CONSONANCE

I. Agreement or congruity; harmony . . . a pleasing combina-
tion of tones; euphony . . . A combination of tones giving a sense
of repose, that is, not demanding resolution; in contrast to dis-
sonance. Acoustically this implies simple ratios between the vibra-
tion rates of the tones constituting the consonance.

II. The property of some sets of tones of sounding as though
they fit together. The consonance of a set of tones is a function of
two variables: (1) the position of the set relative to the fundamen-
tal determined by the set, and (2) the ratio of the least common
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multiple of the set to the greatest common divisor of the set. These
two numerical factors can be combined in different ways to pro-
duce a coefficient of total consonance. The way I have chosen is:

(100 x property I) + property 1I.
See Chapter II.

FUNCTION

I. Webster’s Dictionary gives no definition for “function” in
the musical sense, but it gives one for “function” in a general sense:

Any quality, trait, or fact so related to another that it is depen-
dent upon, and varies with, that other.

II. The function of a periodicity, whether tonal or metrical, is
dependent upon its hierarchical position as a particular member of
a perceptibly single-rooted set. See Chapters VIII and X.

KEY

I. A system, or family of tones, based on their relation to a
keynote, or tonic, from which it is named . . .

IL. The seven-tone major diatonic set or the seven-tone har-
monic minor diatonic set, in any of the following four tunings or
temperaments: Pythagorean, Just, Meantone, Equal-tempered. See
Chapter VII.

METER

1. That part of rhythmical structure concerned with the divi-
sion of a composition into measures by means of regularly occur-
ring accents, each measure consisting of a uniform number of
beats, or time units, of which the first has the strongest accent . . .

IL. Meter is number mixed with time; or repetition of equal
time intervals, or repetition of repetition of such time intervals,
(etc.). See Chapter X. ’

MODE

I An arrangement of the eight diatonic tones of an octave
according to one of certain fixed schemes of their intervals; an
octave species. ‘ ' :

IL. A diatonic set of tones, ordered in time in such a way as to
emphaSize a particular tone of the set. To each key there corre-
spond seven different modes. See Chapter VII.
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MODULATION

I Act or process of changing from one key to another; a
shifting of tonality so that the succeeding tones center upon a new
keynote; . . .

II. Modulation is a change of the basic diatonic set. See Chap-
ter IX. .

ROOT

I. The tone from whose harmonics, or overtones, a chord is
composed; often simply the lowest tone of a chord in its normal
position. ‘

II. That tone of a set of tones which is heard as being most
important, apart from its duration, orchestration, spatial or tem-
poral position relative to the other tones. The root of a set of tones
is that tone whose integral representation in the set is a power of
2. If the set contains more than one such tone, the one with the
lowest power of 2 is the root. Root strength diminishes rapidly
as the power of 2 increases. See Chapter III.

TONALITY

L The principle of key in music, the affinity of a group or
series of tones for a central tone or tonic; the character which a
composition has by virtue of its key, or through the family rela-
tionship of all its tones or chords to the keynote, or tonic of the
whole.

The predominance of the tonic as the link which connects all the
tones of a piece, we may, with Fetis, term the principle of tonality.

~—Helmholtz

II. If music is tonal, then people who listen to it can sing,
relative to a given passage, a tone which they feel to be the most
important tone. Music is tonal if, and only if, the majority of its
‘adjacent tones, whether occurring simultaneously or consecutively,
constitute sets having single predominant roots. See Chapter XI.

TONIC

I. Of or pertaining to the keynote; . . .
II. The predominant root of a key. See Chapter VIIL
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Appendix B
Hindemith

PAUL HINDEMITH has developed the idea of musical hierarchy in
his Craft of Musical Composition, Vol. 1.1 The forest sighted in
this book is similar to the one which is being explored here. But in
that book trees are described as growing in that forest which do
not and could not grow there. Specifically:

Hindemith speaks of non-harmonic tones, although he has ac-
cepted all sets of tones as chords. He is concerned with the spread-
ing out of chords in time. At the same time he distinguishes
between harmonic and non-harmonic tones, although he has re-
moved any objective basis for the distinction between the two by
his use of the word “chord”. Thus the only basis for making the
distinction is the listener’s intuition. This is not theory.

He claims to have derived a twelve-tone scale from a single tone
by a particular method, whereas in fact he did not follow the
method, for if he had, the scale would have had many more than
twelve tones. He arbitrarily selects some of these tones and rejects
others of them.

He assumes that a single root will predominate in any set no
matter how many other conflicting roots are present. As a result of
this assumption he directs his attention and the main body of his
chordal theory to distinguishing between the indistinguishable, or
barely distinguishable, while at the same time he lumps the easily
distinguishable into one category. Metaphorically speaking his
theory of chordal tensions gives careful gradation to the different
degrees of brown, but groups the primary colors into one or two
categories.

His Series II gives unequivocal roots to some intervals which,
according to this book, either have no roots or conceptually equiv-
ocal ones. These intervals are the minor third, the major second,

1 Hindemith, Paul, The Craftvof Musical Composition, Vol. 1, Associated
Music Pubhshers, N. Y 1937.
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and the minor second, together with their inversions. His root
theory is based upon relationships between subsidiary tones, rather
than on the relationships between fundamentals.

These errors are not superficial, but lie at the basis of the the-
ory, thus influencing the super-structure. It is sometimes said that
we should ignore the theoretical weaknesses of Hindemith’s theory
and attend to its “practical” application. The theory, according to
this, is true because it works; that is, it enables us to make sense
out of the music we apply it to. To this it can be answered that
from a contradiction, explicit or implicit, we can prove anything,
even the presence of order where there is none.

Despite these objections, I regard The Craft of Musical Com-
position, Vol. 1, as one of the important books of the century, for
it reasserts the relevance of the overtone series to music, and re-
opens the path to the connection between science and art which
is so desperately needed today. :
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Appendix C
Euler

LEONHARD EULER, in his Tentamen Novae Theoriae Musicae pro-
posed a measure of “sweetness” which depended solely on Property
I1.1 He did not ‘cy:all it consonance, reserving for that word the
meaning: sounding with. Thus any set of tones for him was conso-
nant if they were sounded at the same time. But he defines “sweet-
ness” as follows:

Henceforth we shall call the least common multiple of the simple
sounds constituting the consonance the exponent of the consonance.
The manner of finding the degree of sweetness when this exponent
is given is . ., . as follows: When the exponent is resolved into all its
simple sounds, let the sum of these be s. Let the number of these
factors be n; the degree of sweetness proposed will be

s—-n+1;

thus, by so much less is this number found to be, by that much the
consonance will be sweeter, or easier to perceive.!

This measure was not accepted by many theorists because it gave
the major second, the minor third, and the minor sixth the same
degree of sweetness. Instead of improving on the measure, theorists
abandoned the whole idea of deriving a mathematical measure
which would agree with the musician’s intuitions.

Euler also suggested that the dominant seventh chord could be
represented by the numbers 4:5:6:7.2

1 Euler Leonhard, Tentamen Novae Theoriae Musicae, Chapter IV, Section

6, Opera Omnia, Series 3, Vol. I, Lipsiae and Berolini, 1926.
2 Euler, Leonhard, Du Véritable Caractére de la Musique Moderne, Ibid.
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